Suppr超能文献

迈向对大肠杆菌氧气反应的系统层面理解。

Towards a systems level understanding of the oxygen response of Escherichia coli.

作者信息

Bettenbrock Katja, Bai Hao, Ederer Michael, Green Jeffrey, Hellingwerf Klaas J, Holcombe Michael, Kunz Samantha, Rolfe Matthew D, Sanguinetti Guido, Sawodny Oliver, Sharma Poonam, Steinsiek Sonja, Poole Robert K

机构信息

Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.

Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom.

出版信息

Adv Microb Physiol. 2014;64:65-114. doi: 10.1016/B978-0-12-800143-1.00002-6.

Abstract

Escherichia coli is a facultatively anaerobic bacterium. With glucose if no external electron acceptors are available, ATP is produced by substrate level phosphorylation. The intracellular redox balance is maintained by mixed-acid fermentation, that is, the production and excretion of several organic acids. When oxygen is available, E. coli switches to aerobic respiration to achieve redox balance and optimal energy conservation by proton translocation linked to electron transfer. The switch between fermentative and aerobic respiratory growth is driven by extensive changes in gene expression and protein synthesis, resulting in global changes in metabolic fluxes and metabolite concentrations. This oxygen response is determined by the interaction of global and local genetic regulatory mechanisms, as well as by enzymatic regulation. The response is affected by basic physical constraints such as diffusion, thermodynamics and the requirement for a balance of carbon, electrons and energy (predominantly the proton motive force and the ATP pool). A comprehensive systems level understanding of the oxygen response of E. coli requires the integrated interpretation of experimental data that are pertinent to the multiple levels of organization that mediate the response. In the pan-European venture, Systems Biology of Microorganisms (SysMO) and specifically within the project Systems Understanding of Microbial Oxygen Metabolism (SUMO), regulator activities, gene expression, metabolite levels and metabolic flux datasets were obtained using a standardized and reproducible chemostat-based experimental system. These different types and qualities of data were integrated using mathematical models. The approach described here has revealed a much more detailed picture of the aerobic-anaerobic response, especially for the environmentally critical microaerobic range that is located between unlimited oxygen availability and anaerobiosis.

摘要

大肠杆菌是一种兼性厌氧菌。在没有外部电子受体的情况下利用葡萄糖时,通过底物水平磷酸化产生ATP。细胞内的氧化还原平衡通过混合酸发酵来维持,即几种有机酸的产生和排泄。当有氧气时,大肠杆菌会切换到有氧呼吸,通过与电子传递相关的质子转运来实现氧化还原平衡和最佳能量保存。发酵性生长与有氧呼吸生长之间的切换由基因表达和蛋白质合成的广泛变化驱动,导致代谢通量和代谢物浓度的全局性变化。这种氧响应由全局和局部遗传调控机制的相互作用以及酶促调节决定。该响应受到诸如扩散、热力学以及碳、电子和能量平衡(主要是质子动力和ATP池)等基本物理限制的影响。要全面系统地了解大肠杆菌的氧响应,需要综合解释与介导该响应的多个组织层次相关的实验数据。在泛欧项目“微生物系统生物学”(SysMO)中,特别是在“微生物氧代谢系统理解”(SUMO)项目中,使用标准化且可重复的基于恒化器的实验系统获得了调节子活性、基因表达、代谢物水平和代谢通量数据集。利用数学模型整合了这些不同类型和质量的数据。这里描述的方法揭示了有氧-厌氧响应更为详细的情况,特别是对于介于无限氧气供应和无氧状态之间的对环境至关重要的微需氧范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验