Suppr超能文献

大肠杆菌的替代呼吸途径:响应电子受体的能量学与转录调控

Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors.

作者信息

Unden G, Bongaerts J

机构信息

Institut für Mikrobiologie und Weinforschung, Universität Mainz, Germany.

出版信息

Biochim Biophys Acta. 1997 Jul 4;1320(3):217-34. doi: 10.1016/s0005-2728(97)00034-0.

Abstract

The electron-transport chains of Escherichia coli are composed of many different dehydrogenases and terminal reductases (or oxidases) which are linked by quinones (ubiquinone, menaquinone and demethylmenaquinone). Quinol:cytochrome c oxido-reductase ('bc1 complex') is not present. For various electron acceptors (O2, nitrate) and donors (formate, H2, NADH, glycerol-3-P) isoenzymes are present. The enzymes show great variability in membrane topology and energy conservation. Energy is conserved by conformational proton pumps, or by arrangement of substrate sites on opposite sides of the membrane resulting in charge separation. Depending on the enzymes and isoenzymes used, the H+/e- ratios are between 0 and 4 H+/e- for the overall chain. The expression of the terminal reductases is regulated by electron acceptors. O2 is the preferred electron acceptor and represses the terminal reductases of anaerobic respiration. In anaerobic respiration, nitrate represses other terminal reductases, such as fumarate or DMSO reductases. Energy conservation is maximal with O2 and lowest with fumarate. By this regulation pathways with high ATP or growth yields are favoured. The expression of the dehydrogenases is regulated by the electron acceptors, too. In aerobic growth, non-coupling dehydrogenases are expressed and used preferentially, whereas in fumarate or DMSO respiration coupling dehydrogenases are essential. Coupling and non-coupling isoenzymes are expressed correspondingly. Thus the rationale for expression of the dehydrogenases is not maximal energy yield, but could be maximal flux or growth rates. Nitrate regulation is effected by two-component signal transfer systems with membraneous nitrate/nitrite sensors (NarX, NarQ) and cytoplasmic response regulators (NarL, NarP) which communicate by protein phosphorylation. O2 regulates by a two-component regulatory system consisting of a membraneous sensor (ArcB) and a response regulator (ArcA). ArcA is the major regulator of aerobic metabolism and represses the genes of aerobic metabolism under anaerobic conditions. FNR is a cytoplasmic O2 responsive regulator with a sensory and a regulatory DNA-binding domain. FNR is the regulator of genes required for anaerobic respiration and related pathways. The binding sites of NarL, NarP, ArcA and FNR are characterized for various promoters. Most of the genes are regulated by more than one of the regulators, which can act in any combination and in a positive or negative mode. By this the hierarchical expression of the genes in response to the electron acceptors is achieved. FNR is located in the cytoplasm and contains a 4Fe4S cluster in the sensory domain. The regulatory concentrations of O2 are 1-5 mbar. Under these conditions O2 diffuses to the cytoplasm and is able to react directly with FNR without involvement of other specific enzymes or protein mediators. By oxidation of the FeS cluster, FNR is converted to the inactive state in a reversible process. Reductive activation could be achieved by cellular reductants in the absence of O2. In addition, O2 may cause destruction and loss of the FeS cluster. It is not known whether this process is required for regulation of FNR function.

摘要

大肠杆菌的电子传递链由许多不同的脱氢酶和末端还原酶(或氧化酶)组成,这些酶通过醌类(泛醌、甲基萘醌和去甲基甲基萘醌)连接。不存在喹醇:细胞色素c氧化还原酶(“bc1复合物”)。对于各种电子受体(O2、硝酸盐)和供体(甲酸、H2、NADH、甘油-3-磷酸),都存在同工酶。这些酶在膜拓扑结构和能量守恒方面表现出很大的变异性。能量通过构象质子泵或通过将底物位点排列在膜的两侧导致电荷分离来守恒。根据所使用的酶和同工酶,整个链的H+/e-比率在0至4 H+/e-之间。末端还原酶的表达受电子受体调节。O2是首选的电子受体,并抑制厌氧呼吸的末端还原酶。在厌氧呼吸中,硝酸盐抑制其他末端还原酶,如富马酸或二甲基亚砜还原酶。O2时能量守恒最大,富马酸时最低。通过这种调节,有利于具有高ATP或高生长产量的途径。脱氢酶的表达也受电子受体调节。在有氧生长中,表达非偶联脱氢酶并优先使用,而在富马酸或二甲基亚砜呼吸中,偶联脱氢酶是必不可少的。相应地表达偶联和非偶联同工酶。因此,脱氢酶表达的基本原理不是最大能量产量,而是可能是最大通量或生长速率。硝酸盐调节由具有膜性硝酸盐/亚硝酸盐传感器(NarX、NarQ)和细胞质响应调节因子(NarL、NarP)的双组分信号传递系统实现,它们通过蛋白质磷酸化进行通信。O2通过由膜性传感器(ArcB)和响应调节因子(ArcA)组成的双组分调节系统进行调节。ArcA是有氧代谢的主要调节因子,在厌氧条件下抑制有氧代谢的基因。FNR是一种细胞质O2响应调节因子,具有一个传感和一个调节DNA结合结构域。FNR是厌氧呼吸和相关途径所需基因的调节因子。NarL、NarP、ArcA和FNR的结合位点已针对各种启动子进行了表征。大多数基因受一种以上调节因子的调节,这些调节因子可以以任何组合并以正或负模式起作用。由此实现了基因对电子受体响应的分级表达。FNR位于细胞质中,在传感结构域中含有一个4Fe4S簇。O2的调节浓度为1-5毫巴。在这些条件下,O2扩散到细胞质中,能够直接与FNR反应,而无需其他特定酶或蛋白质介质的参与。通过FeS簇的氧化,FNR在一个可逆过程中转化为无活性状态。在没有O2的情况下,细胞还原剂可以实现还原激活。此外,O2可能导致FeS簇的破坏和损失。尚不清楚这个过程是否是FNR功能调节所必需的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验