Suppr超能文献

UvrD303解旋酶超家族表现出更高的持续合成能力。

The UvrD303 hyper-helicase exhibits increased processivity.

作者信息

Meiners Matthew J, Tahmaseb Kambiz, Matson Steven W

机构信息

From the Department of Biology.

From the Department of Biology, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599

出版信息

J Biol Chem. 2014 Jun 13;289(24):17100-10. doi: 10.1074/jbc.M114.565309. Epub 2014 May 5.

Abstract

DNA helicases use energy derived from nucleoside 5'-triphosphate hydrolysis to catalyze the separation of double-stranded DNA into single-stranded intermediates for replication, recombination, and repair. Escherichia coli helicase II (UvrD) functions in methyl-directed mismatch repair, nucleotide excision repair, and homologous recombination. A previously discovered 2-amino acid substitution of residues 403 and 404 (both Asp → Ala) in the 2B subdomain of UvrD (uvrD303) confers an antimutator and UV-sensitive phenotype on cells expressing this allele. The purified protein exhibits a "hyper-helicase" unwinding activity in vitro. Using rapid quench, pre-steady state kinetic experiments we show the increased helicase activity of UvrD303 is due to an increase in the processivity of the unwinding reaction. We suggest that this mutation in the 2B subdomain results in a weakened interaction with the 1B subdomain, allowing the helicase to adopt a more open conformation. This is consistent with the idea that the 2B subdomain may have an autoregulatory role. The UvrD303 mutation may enable the helicase to unwind DNA via a "strand displacement" mechanism, which is similar to the mechanism used to processively translocate along single-stranded DNA, and the increased unwinding processivity may contribute directly to the antimutator phenotype.

摘要

DNA解旋酶利用核苷5'-三磷酸水解产生的能量,催化双链DNA分离成单链中间体,用于复制、重组和修复。大肠杆菌解旋酶II(UvrD)在甲基导向错配修复、核苷酸切除修复和同源重组中发挥作用。先前发现的UvrD 2B亚结构域中第403和404位残基(均为天冬氨酸→丙氨酸)的2个氨基酸取代(uvrD303)赋予表达该等位基因的细胞抗突变和对紫外线敏感的表型。纯化后的蛋白在体外表现出“超解旋酶”解旋活性。通过快速淬灭、稳态前动力学实验,我们发现UvrD303解旋酶活性增加是由于解旋反应的持续合成能力增强。我们认为,2B亚结构域中的这种突变导致与1B亚结构域的相互作用减弱,使解旋酶能够采用更开放的构象。这与2B亚结构域可能具有自动调节作用的观点一致。UvrD303突变可能使解旋酶通过“链置换”机制解开DNA,这类似于用于沿单链DNA持续易位的机制,解旋持续合成能力的增加可能直接导致抗突变表型。

相似文献

1
The UvrD303 hyper-helicase exhibits increased processivity.
J Biol Chem. 2014 Jun 13;289(24):17100-10. doi: 10.1074/jbc.M114.565309. Epub 2014 May 5.
2
Large domain movements upon UvrD dimerization and helicase activation.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12178-12183. doi: 10.1073/pnas.1712882114. Epub 2017 Oct 30.
3
Processivity of nucleic acid unwinding and translocation by helicases.
Proteins. 2016 Nov;84(11):1590-1605. doi: 10.1002/prot.25102. Epub 2016 Jul 22.
4
Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding.
J Mol Biol. 2011 Aug 19;411(3):633-48. doi: 10.1016/j.jmb.2011.06.019. Epub 2011 Jun 17.
5
Resolving Holliday junctions with Escherichia coli UvrD helicase.
J Biol Chem. 2012 Mar 9;287(11):8126-34. doi: 10.1074/jbc.M111.314047. Epub 2012 Jan 20.
6
UvrD helicase activation by MutL involves rotation of its 2B subdomain.
Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16320-16325. doi: 10.1073/pnas.1905513116. Epub 2019 Jul 30.
7
The 2B subdomain of Rep helicase links translocation along DNA with protein displacement.
Nucleic Acids Res. 2018 Sep 28;46(17):8917-8925. doi: 10.1093/nar/gky673.
8
A Dimer of Escherichia coli UvrD is the active form of the helicase in vitro.
J Mol Biol. 2003 Jan 31;325(5):913-35. doi: 10.1016/s0022-2836(02)01277-9.
9
Function of a strand-separation pin element in the PriA DNA replication restart helicase.
J Biol Chem. 2019 Feb 22;294(8):2801-2814. doi: 10.1074/jbc.RA118.006870. Epub 2018 Dec 28.
10
Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain.
Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10076-81. doi: 10.1073/pnas.0502886102. Epub 2005 Jul 11.

引用本文的文献

2
Rad51 Nucleoprotein Filament Disassembly Captured Using Fluorescent Plasmodium falciparum SSB as a Reporter for Single-Stranded DNA.
PLoS One. 2016 Jul 14;11(7):e0159242. doi: 10.1371/journal.pone.0159242. eCollection 2016.
3
Taking a molecular motor for a spin: helicase mechanism studied by spin labeling and PELDOR.
Nucleic Acids Res. 2016 Jan 29;44(2):954-68. doi: 10.1093/nar/gkv1373. Epub 2015 Dec 10.

本文引用的文献

1
Single-stranded DNA translocation of E. coli UvrD monomer is tightly coupled to ATP hydrolysis.
J Mol Biol. 2012 Apr 20;418(1-2):32-46. doi: 10.1016/j.jmb.2012.02.013. Epub 2012 Feb 14.
2
Biochemical analysis of the human mismatch repair proteins hMutSα MSH2(G674A)-MSH6 and MSH2-MSH6(T1219D).
J Biol Chem. 2012 Mar 23;287(13):9777-9791. doi: 10.1074/jbc.M111.316919. Epub 2012 Jan 25.
3
Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding.
J Mol Biol. 2011 Aug 19;411(3):633-48. doi: 10.1016/j.jmb.2011.06.019. Epub 2011 Jun 17.
4
Visualizing ATP-dependent RNA translocation by the NS3 helicase from HCV.
J Mol Biol. 2011 Feb 4;405(5):1139-53. doi: 10.1016/j.jmb.2010.11.034. Epub 2010 Dec 9.
5
Helicases: an overview.
Methods Mol Biol. 2010;587:1-12. doi: 10.1007/978-1-60327-355-8_1.
6
Rapid purification of helicase proteins and in vitro analysis of helicase activity.
Methods. 2010 Jul;51(3):322-8. doi: 10.1016/j.ymeth.2010.02.008. Epub 2010 Feb 12.
7
The Mcm complex: unwinding the mechanism of a replicative helicase.
Microbiol Mol Biol Rev. 2009 Dec;73(4):652-83. doi: 10.1128/MMBR.00019-09.
8
RecQ helicases: multifunctional genome caretakers.
Nat Rev Cancer. 2009 Sep;9(9):644-54. doi: 10.1038/nrc2682. Epub 2009 Aug 6.
10
Non-hexameric DNA helicases and translocases: mechanisms and regulation.
Nat Rev Mol Cell Biol. 2008 May;9(5):391-401. doi: 10.1038/nrm2394.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验