Constantinescu-Aruxandei Diana, Petrovic-Stojanovska Biljana, Schiemann Olav, Naismith James H, White Malcolm F
Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK.
Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, 53115 Bonn, Germany.
Nucleic Acids Res. 2016 Jan 29;44(2):954-68. doi: 10.1093/nar/gkv1373. Epub 2015 Dec 10.
The complex molecular motions central to the functions of helicases have long attracted attention. Protein crystallography has provided transformative insights into these dynamic conformational changes, however important questions about the true nature of helicase configurations during the catalytic cycle remain. Using pulsed EPR (PELDOR or DEER) to measure interdomain distances in solution, we have examined two representative helicases: PcrA from superfamily 1 and XPD from superfamily 2. The data show that PcrA is a dynamic structure with domain movements that correlate with particular functional states, confirming and extending the information gleaned from crystal structures and other techniques. XPD in contrast is shown to be a rigid protein with almost no conformational changes resulting from nucleotide or DNA binding, which is well described by static crystal structures. Our results highlight the complimentary nature of PELDOR to crystallography and the power of its precision in understanding the conformational changes relevant to helicase function.
解旋酶功能核心的复杂分子运动长期以来一直备受关注。蛋白质晶体学为这些动态构象变化提供了变革性的见解,然而,关于催化循环中解旋酶构型的真实性质仍存在重要问题。我们使用脉冲电子顺磁共振(PELDOR或DEER)来测量溶液中的结构域间距离,研究了两种代表性的解旋酶:超家族1的PcrA和超家族2的XPD。数据表明,PcrA是一种动态结构,其结构域运动与特定功能状态相关,证实并扩展了从晶体结构和其他技术中获得的信息。相比之下,XPD被证明是一种刚性蛋白质,核苷酸或DNA结合几乎不会导致其构象变化,静态晶体结构对此有很好的描述。我们的结果突出了PELDOR与晶体学的互补性质及其在理解与解旋酶功能相关的构象变化方面的精确能力。