Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Champaign, United States.
Beckman Institute for Advanced Science and Technology, Champaign, United States.
Elife. 2018 Apr 17;7:e34186. doi: 10.7554/eLife.34186.
Helicases play key roles in genome maintenance, yet it remains elusive how these enzymes change conformations and how transitions between different conformational states regulate nucleic acid reshaping. Here, we developed a computational technique combining structural bioinformatics approaches and atomic-level free-energy simulations to characterize how the DNA repair enzyme UvrD changes its conformation at the fork junction to switch its function from unwinding to rezipping DNA. The lowest free-energy path shows that UvrD opens the interface between two domains, allowing the bound ssDNA to escape. The simulation results predict a key metastable 'tilted' state during ssDNA strand switching. By simulating FRET distributions with fluorophores attached to UvrD, we show that the new state is supported quantitatively by single-molecule measurements. The present study deciphers key elements for the 'hyper-helicase' behavior of a mutant and provides an effective framework to characterize directly structure-function relationships in molecular machines.
解旋酶在基因组维护中发挥着关键作用,但这些酶如何改变构象以及不同构象状态之间的转变如何调节核酸重塑仍然难以捉摸。在这里,我们开发了一种计算技术,结合结构生物信息学方法和原子水平的自由能模拟,以表征 DNA 修复酶 UvrD 如何在分叉连接处改变其构象,从而将其功能从解旋切换到重新缠绕 DNA。最低自由能路径表明 UvrD 打开两个结构域之间的界面,允许结合的 ssDNA 逃逸。模拟结果预测了 ssDNA 链切换过程中的一个关键亚稳态“倾斜”状态。通过用附着在 UvrD 上的荧光团模拟 FRET 分布,我们表明新状态可以通过单分子测量定量支持。本研究揭示了突变体“超解旋酶”行为的关键因素,并为直接表征分子机器的结构-功能关系提供了有效框架。