From the Departments of Radiation and Cellular Oncology and.
Molecular Genetics and Cell Biology, Cummings Life Science Center, University of Chicago, Chicago, Illinois 60637 and.
J Biol Chem. 2014 Jun 27;289(26):18076-86. doi: 10.1074/jbc.M114.558601. Epub 2014 May 5.
During meiosis in Saccharomyces cerevisiae, the HOP2 and MND1 genes are essential for recombination. A previous biochemical study has shown that budding yeast Hop2-Mnd1 stimulates the activity of the meiosis-specific strand exchange protein ScDmc1 only 3-fold, whereas analogous studies using mammalian homologs show >30-fold stimulation. The HOP2 gene was recently discovered to contain a second intron that lies near the 3'-end. We show that both HOP2 introns are efficiently spliced during meiosis, forming a predominant transcript that codes for a protein with a C-terminal sequence different from that of the previously studied version of the protein. Using the newly identified HOP2 open reading frame to direct synthesis of wild type Hop2 protein, we show that the Hop2-Mnd1 heterodimer stimulated Dmc1 D-loop activity up to 30-fold, similar to the activity of mammalian Hop2-Mnd1. ScHop2-Mnd1 stimulated ScDmc1 activity in the presence of physiological (micromolar) concentrations of Ca(2+) ions, as long as Mg(2+) was also present at physiological concentrations, leading us to hypothesize that ScDmc1 protomers bind both cations in the active Dmc1 filament. Co-factor requirements and order-of-addition experiments suggested that Hop2-Mnd1-mediated stimulation of Dmc1 involves a process that follows the formation of functional Dmc1-ssDNA filaments. In dramatic contrast to mammalian orthologs, the stimulatory activity of budding yeast Hop2-Mnd1 appeared to be specific to Dmc1; we observed no Hop2-Mnd1-mediated stimulation of the other budding yeast strand exchange protein Rad51. Together, these results support previous genetic experiments indicating that Hop2-Mnd1 specifically stimulates Dmc1 during meiotic recombination in budding yeast.
在酿酒酵母减数分裂过程中,HOP2 和 MND1 基因对重组至关重要。先前的生化研究表明,芽殖酵母 Hop2-Mnd1 仅将减数分裂特异性链交换蛋白 ScDmc1 的活性刺激 3 倍,而使用哺乳动物同源物进行的类似研究表明刺激超过 30 倍。最近发现 HOP2 基因包含第二个位于 3'-末端附近的内含子。我们表明,在减数分裂过程中,两个 HOP2 内含子都被有效地剪接,形成主要转录本,该转录本编码的蛋白质的 C 末端序列与先前研究的蛋白质版本不同。使用新鉴定的 HOP2 开放阅读框来指导野生型 Hop2 蛋白的合成,我们表明 Hop2-Mnd1 异二聚体将 Dmc1 D 环活性刺激高达 30 倍,类似于哺乳动物 Hop2-Mnd1 的活性。ScHop2-Mnd1 在生理浓度(微摩尔)的 Ca(2+)离子存在下刺激 ScDmc1 活性,只要 Mg(2+)也存在于生理浓度下,这使我们假设 ScDmc1 单体在活性 Dmc1 细丝中结合两种阳离子。共因子要求和添加顺序实验表明,Hop2-Mnd1 介导的 Dmc1 刺激涉及一个紧随功能性 Dmc1-ssDNA 细丝形成的过程。与哺乳动物同源物形成鲜明对比的是,芽殖酵母 Hop2-Mnd1 的刺激活性似乎专门针对 Dmc1;我们没有观察到芽殖酵母其他链交换蛋白 Rad51 的 Hop2-Mnd1 介导的刺激。这些结果共同支持先前的遗传实验,表明 Hop2-Mnd1 在芽殖酵母减数分裂重组过程中特异性刺激 Dmc1。