Department of Electrical Engineering, Stanford University , Stanford, California 94305, United States.
Nano Lett. 2014 Jun 11;14(6):3419-26. doi: 10.1021/nl500940z. Epub 2014 May 7.
Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) < U < 10(-1) m/s) spanning a wide temperature range (415 < T < 580 K). We also observed direct evidence of non-Arrhenius crystallization behavior in programmed PCM devices at very high heating rates (>10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.
相变材料因其在纳秒时间尺度内实现相转变的能力而被广泛应用于非易失性存储器。然而,由于缺乏快速准确的温度控制方法,这些材料的快速结晶动力学知识有限。在这项工作中,我们开发了一种实验方法,该方法使用实际的器件结构,能够对更具技术相关性的熔融淬火非晶相中的相变动力学进行超快表征。我们在功能化盖帽相变存储(PCM)器件中提取了结晶生长速度(U),跨越了很宽的温度范围(415 < T < 580 K),涵盖了 8 个数量级(10(-10)< U < 10(-1)m/s)。我们还在非常高的加热速率(> 10(8)K/s)下观察到编程 PCM 器件中非阿仑尼乌斯结晶行为的直接证据,这揭示了 Ge2Sb2Te5 在过冷液相中的极端脆弱性。此外,还研究了这些结晶性能作为器件编程循环的函数,结果表明由于元素偏析,单元保留性能下降。上述实验是通过使用称为微热台(MTS)的片上快速加热器和温度计来实现的,该 MTS 与垂直相变存储(PCM)单元集成在一起。使用 MTS 可以将 PCM 层的温度控制在 600 K 以内,热时间常数为 800 ns,从而导致加热速率约为 10(8)K/s,接近 PCM 编程过程中的典型器件工作条件。MTS 允许我们独立控制相变的电气和热方面(在传统 PCM 单元中是不可分离的),并从实际 PCM 器件中提取关键材料性能的温度依赖性。