Ullah Kaleem, Li Qiu, Li Tiantian, Gu Tingyi
Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA.
Tianjin Key Laboratory of High-Speed Cutting and Precision Machining, Tianjin University of Technology and Education, Tianjin 300222, China.
Nanophotonics. 2024 Jan 31;13(12):2089-2099. doi: 10.1515/nanoph-2023-0725. eCollection 2024 May.
Chalcogenide-based nonvolatile phase change materials (PCMs) have a long history of usage, from bulk disk memory to all-optic neuromorphic computing circuits. Being able to perform uniform phase transitions over a subwavelength scale makes PCMs particularly suitable for photonic applications. For switching between nonvolatile states, the conventional chalcogenide phase change materials are brought to a melting temperature to break the covalent bonds. The cooling rate determines the final state. Reversible polymorphic layered materials provide an alternative atomic transition mechanism for low-energy electronic (small domain size) and photonic nonvolatile memories (which require a large effective tuning area). The small energy barrier of breaking van der Waals force facilitates low energy, fast-reset, and melting-free phase transitions, which reduces the chance of element segregation-associated device failure. The search for such material families starts with polymorphic InSe, which has two layered structures that are topologically similar and stable at room temperature. In this perspective, we first review the history of different memory schemes, compare the thermal dynamics of phase transitions in amorphous-crystalline and InSe, detail the device implementations for all-optical memory, and discuss the challenges and opportunities associated with polymorphic memory.
基于硫族化物的非易失性相变材料(PCM)有着悠久的使用历史,从大容量磁盘存储器到全光神经形态计算电路。能够在亚波长尺度上执行均匀的相变使得PCM特别适用于光子应用。对于非易失性状态之间的切换,传统的硫族化物相变材料被加热到熔化温度以打破共价键。冷却速率决定最终状态。可逆多晶型层状材料为低能量电子(小畴尺寸)和光子非易失性存储器(需要大的有效调谐面积)提供了另一种原子转变机制。打破范德华力的小能垒有利于低能量、快速复位和无熔化的相变,这减少了与元素偏析相关的器件故障的机会。对这类材料家族的探索始于多晶型InSe,它有两种在室温下拓扑结构相似且稳定的层状结构。从这个角度出发,我们首先回顾不同存储方案的历史,比较非晶态-晶态和InSe中相变的热动力学,详细介绍全光存储器的器件实现,并讨论与多晶型存储器相关的挑战和机遇。