Suppr超能文献

通过大规模分子动力学模拟实现相变化合物GeTe的快速结晶

Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations.

作者信息

Sosso Gabriele C, Miceli Giacomo, Caravati Sebastiano, Giberti Federico, Behler Jörg, Bernasconi Marco

机构信息

†Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via R. Cozzi 53, I-20125 Milano, Italy.

‡Department of Chemistry and Applied Biosciences and Facoltà di Informatica, ETH Zurich and Università della Svizzera Italiana, Istituto di Scienze Computazionali, Via G. Buffi 13, CH-6900 Lugano, Switzerland.

出版信息

J Phys Chem Lett. 2013 Dec 19;4(24):4241-6. doi: 10.1021/jz402268v. Epub 2013 Dec 2.

Abstract

Phase change materials are of great interest as active layers in rewritable optical disks and novel electronic nonvolatile memories. These applications rest on a fast and reversible transformation between the amorphous and crystalline phases upon heating, taking place on the nanosecond time scale. In this work, we investigate the microscopic origin of the fast crystallization process by means of large-scale molecular dynamics simulations of the phase change compound GeTe. To this end, we use an interatomic potential generated from a Neural Network fitting of a large database of ab initio energies. We demonstrate that in the temperature range of the programming protocols of the electronic memories (500-700 K), nucleation of the crystal in the supercooled liquid is not rate-limiting. In this temperature range, the growth of supercritical nuclei is very fast because of a large atomic mobility, which is, in turn, the consequence of the high fragility of the supercooled liquid and the associated breakdown of the Stokes-Einstein relation between viscosity and diffusivity.

摘要

相变材料作为可重写光盘和新型电子非易失性存储器中的活性层备受关注。这些应用基于加热时在纳秒时间尺度上发生的非晶相和晶相之间快速且可逆的转变。在这项工作中,我们通过对相变化合物GeTe进行大规模分子动力学模拟来研究快速结晶过程的微观起源。为此,我们使用了通过对大量从头算能量数据库进行神经网络拟合生成的原子间势。我们证明,在电子存储器编程协议的温度范围(500 - 700 K)内,过冷液体中晶体的成核不是速率限制因素。在这个温度范围内,由于原子迁移率大,超临界核的生长非常快,而这又是过冷液体的高脆性以及粘度与扩散率之间斯托克斯 - 爱因斯坦关系的相关破坏的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验