Suppr超能文献

计算标准误差。

Computation of standard errors.

出版信息

Health Serv Res. 2014 Apr;49(2):731-50. doi: 10.1111/1475-6773.12122.

Abstract

OBJECTIVES

We discuss the problem of computing the standard errors of functions involving estimated parameters and provide the relevant computer code for three different computational approaches using two popular computer packages.

STUDY DESIGN

We show how to compute the standard errors of several functions of interest: the predicted value of the dependent variable for a particular subject, and the effect of a change in an explanatory variable on the predicted value of the dependent variable for an individual subject and average effect for a sample of subjects. EMPIRICAL APPLICATION: Using a publicly available dataset, we explain three different methods of computing standard errors: the delta method, Krinsky–Robb, and bootstrapping. We provide computer code for Stata 12 and LIMDEP 10/NLOGIT 5.

CONCLUSIONS

In most applications, choice of the computational method for standard errors of functions of estimated parameters is a matter of convenience. However, when computing standard errors of the sample average of functions that involve both estimated parameters and nonstochastic explanatory variables, it is important to consider the sources of variation in the function's values.

摘要

目的

我们讨论了计算涉及估计参数的函数的标准误差的问题,并为使用两个流行的计算机程序包的三种不同计算方法提供了相关的计算机代码。

研究设计

我们展示了如何计算几个感兴趣的函数的标准误差:特定主体的因变量的预测值,以及解释变量的变化对单个主体的因变量的预测值和主体样本的平均效应的影响。

实证应用

使用公开可用的数据集,我们解释了计算标准误差的三种不同方法:Delta 方法、Krinky-Robb 和自举法。我们提供了 Stata 12 和 LIMDEP 10/NLOGIT 5 的计算机代码。

结论

在大多数应用中,选择计算估计参数函数的标准误差的方法是一个便利性问题。然而,当计算涉及估计参数和非随机解释变量的函数的样本平均值的标准误差时,重要的是要考虑函数值的变化来源。

相似文献

1
Computation of standard errors.
Health Serv Res. 2014 Apr;49(2):731-50. doi: 10.1111/1475-6773.12122.
3
Improved approximate confidence intervals for the mean of a log-normal random variable.
Stat Med. 2002 May 30;21(10):1443-59. doi: 10.1002/sim.1052.
4
On computing standard errors for marginal structural Cox models.
Lifetime Data Anal. 2014 Jan;20(1):106-31. doi: 10.1007/s10985-013-9255-7. Epub 2013 Apr 18.
8
Model selection for geostatistical models.
Ecol Appl. 2006 Feb;16(1):87-98. doi: 10.1890/04-0576.
9
Estimation of finite population mean for a sensitive variable using dual auxiliary information in the presence of measurement errors.
PLoS One. 2019 Feb 11;14(2):e0212111. doi: 10.1371/journal.pone.0212111. eCollection 2019.
10
Response to letter to the editor from Dr Rahman Shiri: The challenging topic of suicide across occupational groups.
Scand J Work Environ Health. 2018 Jan 1;44(1):108-110. doi: 10.5271/sjweh.3698. Epub 2017 Dec 8.

引用本文的文献

1
Hypothesis-Driven Research on Multiple Stressors: An Analytical Framework for Stressor Interactions.
Ecol Evol. 2025 Aug 12;15(8):e71959. doi: 10.1002/ece3.71959. eCollection 2025 Aug.
4
The impact of team-based primary care on medication-related outcomes in older adults: A comparative analysis of two Canadian provinces.
Prev Med Rep. 2023 Nov 10;36:102512. doi: 10.1016/j.pmedr.2023.102512. eCollection 2023 Dec.
5
Stressful Life Events and Risk of Homelessness After Active Duty: An Assessment of Risk and Resilience Among Servicemembers.
Public Health Rep. 2023 Nov-Dec;138(6):963-970. doi: 10.1177/00333549221149092. Epub 2023 Feb 1.
7
Marital Experiences and Depression in an Arranged Marriage Setting.
AJS. 2021 May;126(6):1439-1486. doi: 10.1086/714272.
9
Are Housing Prices Associated with Food Consumption?
Int J Environ Res Public Health. 2020 May 30;17(11):3882. doi: 10.3390/ijerph17113882.
10
The Role of Behavioral Health Diagnoses in Adverse Selection.
Psychiatr Serv. 2020 Sep 1;71(9):920-927. doi: 10.1176/appi.ps.201900354. Epub 2020 May 22.

本文引用的文献

1
Interaction terms in nonlinear models.
Health Serv Res. 2012 Feb;47(1 Pt 1):255-74. doi: 10.1111/j.1475-6773.2011.01314.x. Epub 2011 Aug 30.
2
The use of linear instrumental variables methods in health services research and health economics: a cautionary note.
Health Serv Res. 2008 Jun;43(3):1102--20. doi: 10.1111/j.1475-6773.2007.00807.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验