Suppr超能文献

美国的随机人口预测:超越高、中、低(预测)。

Stochastic population forecasts for the United States: beyond high, medium, and low.

作者信息

Lee R D, Tuljapurkar S

出版信息

J Am Stat Assoc. 1994 Dec;89(428):1,175-89.

Abstract

"This article presents and implements a new method for making stochastic population forecasts that provide consistent probability intervals. We blend mathematical demography and statistical time series methods to estimate stochastic models of fertility and mortality based on U.S. data back to 1900 and then use the theory of random-matrix products to forecast various demographic measures and their associated probability intervals to the year 2065. Our expected total population sizes agree quite closely with the Census medium projections, and our 95 percent probability intervals are close to the Census high and low scenarios. But Census intervals in 2065 for ages 65+ are nearly three times as broad as ours, and for 85+ are nearly twice as broad. In contrast, our intervals for the total dependency and youth dependency ratios are more than twice as broad as theirs, and our ratio for the elderly dependency ratio is 12 times as great as theirs. These items have major implications for policy, and these contrasting indications of uncertainty clearly show the limitations of the conventional scenario-based methods."

摘要

本文提出并实施了一种新的方法来进行随机人口预测,该方法能提供一致的概率区间。我们将数学人口统计学和统计时间序列方法相结合,基于可追溯至1900年的美国数据来估计生育和死亡率的随机模型,然后运用随机矩阵乘积理论预测到2065年的各种人口指标及其相关概率区间。我们预期的总人口规模与人口普查的中等预测相当接近,并且我们95%的概率区间接近人口普查的高、低情景。但在2065年,65岁及以上年龄段的人口普查区间几乎是我们的三倍宽,85岁及以上年龄段的人口普查区间几乎是我们的两倍宽。相比之下,我们的总抚养比和青年抚养比区间比他们的宽两倍多,我们的老年抚养比区间是他们的12倍。这些项目对政策有重大影响,而这些关于不确定性的对比表明清楚地显示了传统情景法的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验