Suppr超能文献

可逆永生化的小鼠关节软骨细胞获得长期增殖能力,同时保持软骨生成表型。

Reversibly Immortalized Mouse Articular Chondrocytes Acquire Long-Term Proliferative Capability While Retaining Chondrogenic Phenotype.

作者信息

Lamplot Joseph D, Liu Bo, Yin Liangjun, Zhang Wenwen, Wang Zhongliang, Luther Gaurav, Wagner Eric, Li Ruidong, Nan Guoxin, Shui Wei, Yan Zhengjian, Rames Richard, Deng Fang, Zhang Hongmei, Liao Zhan, Liu Wei, Zhang Junhui, Zhang Zhonglin, Zhang Qian, Ye Jixing, Deng Youlin, Qiao Min, Haydon Rex C, Luu Hue H, Angeles Jovito, Shi Lewis L, He Tong-Chuan, Ho Sherwin H

机构信息

Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA.

出版信息

Cell Transplant. 2015;24(6):1053-66. doi: 10.3727/096368914X681054. Epub 2014 May 2.

Abstract

Cartilage tissue engineering holds great promise for treating cartilaginous pathologies including degenerative disorders and traumatic injuries. Effective cartilage regeneration requires an optimal combination of biomaterial scaffolds, chondrogenic seed cells, and biofactors. Obtaining sufficient chondrocytes remains a major challenge due to the limited proliferative capability of primary chondrocytes. Here we investigate if reversibly immortalized mouse articular chondrocytes (iMACs) acquire long-term proliferative capability while retaining the chondrogenic phenotype. Primary mouse articular chondrocytes (MACs) can be efficiently immortalized with a retroviral vector-expressing SV40 large T antigen flanked with Cre/loxP sites. iMACs exhibit long-term proliferation in culture, although the immortalization phenotype can be reversed by Cre recombinase. iMACs express the chondrocyte markers Col2a1 and aggrecan and produce chondroid matrix in micromass culture. iMACs form subcutaneous cartilaginous masses in athymic mice. Histologic analysis and chondroid matrix staining demonstrate that iMACs can survive, proliferate, and produce chondroid matrix. The chondrogenic growth factor BMP2 promotes iMACs to produce more mature chondroid matrix resembling mature articular cartilage. Taken together, our results demonstrate that iMACs acquire long-term proliferative capability without losing the intrinsic chondrogenic features of MACs. Thus, iMACs provide a valuable cellular platform to optimize biomaterial scaffolds for cartilage regeneration, to identify biofactors that promote the proliferation and differentiation of chondrogenic progenitors, and to elucidate the molecular mechanisms underlying chondrogenesis.

摘要

软骨组织工程在治疗包括退行性疾病和创伤性损伤在内的软骨病变方面具有巨大潜力。有效的软骨再生需要生物材料支架、软骨生成种子细胞和生物因子的最佳组合。由于原代软骨细胞的增殖能力有限,获得足够的软骨细胞仍然是一个主要挑战。在这里,我们研究可逆永生化的小鼠关节软骨细胞(iMACs)是否在保留软骨生成表型的同时获得长期增殖能力。原代小鼠关节软骨细胞(MACs)可以用表达两侧带有Cre/loxP位点的SV40大T抗原的逆转录病毒载体有效地永生化。iMACs在培养中表现出长期增殖,尽管永生化表型可以被Cre重组酶逆转。iMACs表达软骨细胞标志物Col2a1和聚集蛋白聚糖,并在微团培养中产生类软骨基质。iMACs在无胸腺小鼠中形成皮下软骨块。组织学分析和类软骨基质染色表明,iMACs可以存活、增殖并产生类软骨基质。软骨生成生长因子BMP2促进iMACs产生更类似于成熟关节软骨的成熟类软骨基质。综上所述,我们的结果表明,iMACs获得了长期增殖能力,而没有丧失MACs的内在软骨生成特征。因此,iMACs为优化用于软骨再生的生物材料支架、鉴定促进软骨生成祖细胞增殖和分化的生物因子以及阐明软骨生成的分子机制提供了一个有价值的细胞平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验