RIKEN Plant Science Center, Yokohama, Kanagawa , 230-0045, Japan.
Bull Math Biol. 2014 Jun;76(6):1333-51. doi: 10.1007/s11538-014-9960-8. Epub 2014 May 7.
The availability of large-scale datasets has led to more effort being made to understand characteristics of metabolic reaction networks. However, because the large-scale data are semi-quantitative, and may contain biological variations and/or analytical errors, it remains a challenge to construct a mathematical model with precise parameters using only these data. The present work proposes a simple method, referred to as PENDISC (Parameter Estimation in a N on- DImensionalized S-system with Constraints), to assist the complex process of parameter estimation in the construction of a mathematical model for a given metabolic reaction system. The PENDISC method was evaluated using two simple mathematical models: a linear metabolic pathway model with inhibition and a branched metabolic pathway model with inhibition and activation. The results indicate that a smaller number of data points and rate constant parameters enhances the agreement between calculated values and time-series data of metabolite concentrations, and leads to faster convergence when the same initial estimates are used for the fitting. This method is also shown to be applicable to noisy time-series data and to unmeasurable metabolite concentrations in a network, and to have a potential to handle metabolome data of a relatively large-scale metabolic reaction system. Furthermore, it was applied to aspartate-derived amino acid biosynthesis in Arabidopsis thaliana plant. The result provides confirmation that the mathematical model constructed satisfactorily agrees with the time-series datasets of seven metabolite concentrations.
大规模数据集的可用性使得人们更加努力地理解代谢反应网络的特性。然而,由于大规模数据是半定量的,并且可能包含生物变异和/或分析误差,因此仅使用这些数据构建具有精确参数的数学模型仍然是一个挑战。本工作提出了一种简单的方法,称为 PENDISC(带约束的非维 S 系统中的参数估计),以协助在给定代谢反应系统的数学模型构建中进行复杂的参数估计过程。使用两种简单的数学模型评估了 PENDISC 方法:具有抑制作用的线性代谢途径模型和具有抑制和激活作用的分支代谢途径模型。结果表明,较少的数据点和速率常数参数可以增强计算值与代谢物浓度时间序列数据之间的一致性,并且在使用相同的初始估计值进行拟合时,可以更快地收敛。该方法还适用于噪声时间序列数据和网络中不可测量的代谢物浓度,并且有可能处理相对大规模代谢反应系统的代谢组学数据。此外,它被应用于拟南芥中天冬氨酸衍生氨基酸的生物合成。结果证实,所构建的数学模型与七种代谢物浓度的时间序列数据集非常吻合。