Suppr超能文献

从代谢物浓度的时间序列数据中鉴定代谢反应网络。

Identification of a metabolic reaction network from time-series data of metabolite concentrations.

机构信息

RIKEN Plant Science Center, Yokohama, Kanagawa, Japan.

出版信息

PLoS One. 2013;8(1):e51212. doi: 10.1371/journal.pone.0051212. Epub 2013 Jan 10.

Abstract

Recent development of high-throughput analytical techniques has made it possible to qualitatively identify a number of metabolites simultaneously. Correlation and multivariate analyses such as principal component analysis have been widely used to analyse those data and evaluate correlations among the metabolic profiles. However, these analyses cannot simultaneously carry out identification of metabolic reaction networks and prediction of dynamic behaviour of metabolites in the networks. The present study, therefore, proposes a new approach consisting of a combination of statistical technique and mathematical modelling approach to identify and predict a probable metabolic reaction network from time-series data of metabolite concentrations and simultaneously construct its mathematical model. Firstly, regression functions are fitted to experimental data by the locally estimated scatter plot smoothing method. Secondly, the fitted result is analysed by the bivariate Granger causality test to determine which metabolites cause the change in other metabolite concentrations and remove less related metabolites. Thirdly, S-system equations are formed by using the remaining metabolites within the framework of biochemical systems theory. Finally, parameters including rate constants and kinetic orders are estimated by the Levenberg-Marquardt algorithm. The estimation is iterated by setting insignificant kinetic orders at zero, i.e., removing insignificant metabolites. Consequently, a reaction network structure is identified and its mathematical model is obtained. Our approach is validated using a generic inhibition and activation model and its practical application is tested using a simplified model of the glycolysis of Lactococcus lactis MG1363, for which actual time-series data of metabolite concentrations are available. The results indicate the usefulness of our approach and suggest a probable pathway for the production of lactate and acetate. The results also indicate that the approach pinpoints a probable strong inhibition of lactate on the glycolysis pathway.

摘要

近年来,高通量分析技术的发展使得同时定性鉴定许多代谢物成为可能。相关和多元分析,如主成分分析,已被广泛用于分析这些数据并评估代谢谱之间的相关性。然而,这些分析不能同时进行代谢反应网络的鉴定和网络中代谢物动态行为的预测。因此,本研究提出了一种新的方法,该方法由统计技术和数学建模方法的组合组成,用于从代谢物浓度的时间序列数据中识别和预测可能的代谢反应网络,并同时构建其数学模型。首先,通过局部估计散点平滑方法拟合实验数据的回归函数。其次,通过双变量格兰杰因果关系检验分析拟合结果,以确定哪些代谢物导致其他代谢物浓度的变化,并去除相关性较小的代谢物。第三,在生化系统理论的框架内,使用剩余的代谢物形成 S 系统方程。最后,通过 Levenberg-Marquardt 算法估计包括速率常数和动力学阶数在内的参数。通过将不重要的动力学阶数设置为零(即去除不重要的代谢物)来迭代估计。因此,识别反应网络结构并获得其数学模型。我们的方法使用通用的抑制和激活模型进行验证,并使用 Lactococcus lactis MG1363 糖酵解的简化模型进行实际应用测试,该模型具有可用的代谢物浓度实际时间序列数据。结果表明了我们方法的有效性,并提出了产生乳酸盐和醋酸盐的可能途径。结果还表明,该方法指出了乳酸盐对糖酵解途径的可能强烈抑制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c02/3542379/7f50f2d41360/pone.0051212.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验