Suppr超能文献

Dempster-Shafer 框架中的最优目标关联。

Optimal object association in theDempster-Shafer framework.

出版信息

IEEE Trans Cybern. 2014 Dec;44(12):2521-31. doi: 10.1109/TCYB.2014.2309632. Epub 2014 Apr 29.

Abstract

Object association is a crucial step in target tracking and data fusion applications. This task can be formalized as the search for a relation between two sets (e.g., a sets of tracks and a set of observations) in such a way that each object in one set is matched with at most one object in the other set. In this paper, this problem is tackled using the formalism of belief functions. Evidence about the possible association of each object pair, usually obtained by comparing the values of some attributes, is modeled by a Dempster-Shafer mass function defined in the frame of all possible relations. These mass functions are combined using Dempster's rule, and the relation with maximal plausibility is found by solving an integer linear programming problem. This problem is shown to be equivalent to a linear assignment problem, which can be solved in polynomial time using, for example, the Hungarian algorithm. This method is demonstrated using simulated and real data. The 3-D extension of this problem (with three object sets) is also formalized and is shown to be NP-Hard.

摘要

目标关联是目标跟踪和数据融合应用中的关键步骤。这项任务可以被形式化为在两个集合(例如,一组轨迹和一组观测值)之间寻找关系的过程,使得一个集合中的每个对象最多只能与另一个集合中的一个对象匹配。在本文中,使用信任函数的形式化方法来解决这个问题。关于每个对象对可能关联的证据,通常通过比较某些属性的值来获得,由在所有可能关系框架中定义的 Dempster-Shafer 质量函数建模。这些质量函数使用 Dempster 的规则进行组合,并通过解决整数线性规划问题找到具有最大可信度的关系。该问题被证明与线性分配问题等效,可以使用匈牙利算法等方法在多项式时间内解决。该方法使用模拟和真实数据进行了演示。该问题的 3-D 扩展(具有三个对象集)也被形式化,并被证明是 NP 难的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验