Suppr超能文献

通过保留局部轨迹几何形状实现智能车辆的轨迹间关联

Track-to-Track Association for Intelligent Vehicles by Preserving Local Track Geometry.

作者信息

Zou Ke, Zhu Hao, De Freitas Allan, Li Yongfu, Najafabadi Hamid Esmaeili

机构信息

Key Laboratory of Intelligent Air-Ground Cooperative Control for Universities in Chongqing, College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

Department of Electrical, Electronic and Computer Engineering, University of Pretoria, 0002 Hatfield, South Africa.

出版信息

Sensors (Basel). 2020 Mar 4;20(5):1412. doi: 10.3390/s20051412.

Abstract

Track-to-track association (T2TA) is a challenging task in situational awareness in intelligent vehicles and surveillance systems. In this paper, the problem of track-to-track association with sensor bias (T2TASB) is considered. Traditional T2TASB algorithms only consider a statistical distance cost between local tracks from different sensors, without exploiting the geometric relationship between one track and its neighboring ones from each sensor. However, the relative geometry among neighboring local tracks is usually stable, at least for a while, and thus helpful in improving the T2TASB. In this paper, we propose a probabilistic method, called the local track geometry preservation (LTGP) algorithm, which takes advantage of the geometry of tracks. Assuming that the local tracks of one sensor are represented by Gaussian mixture model (GMM) centroids, the corresponding local tracks of the other sensor are fitted to those of the first sensor. In this regard, a geometrical descriptor connectivity matrix is constructed to exploit the relative geometry of these tracks. The track association problem is formulated as a maximum likelihood estimation problem with a local track geometry constraint, and an expectation-maximization (EM) algorithm is developed to find the solution. Simulation results demonstrate that the proposed methods offer better performance than the state-of-the-art methods.

摘要

航迹关联(T2TA)是智能车辆和监控系统态势感知中的一项具有挑战性的任务。本文考虑了存在传感器偏差的航迹关联(T2TASB)问题。传统的T2TASB算法仅考虑来自不同传感器的局部航迹之间的统计距离代价,而没有利用一条航迹与其来自每个传感器的相邻航迹之间的几何关系。然而,相邻局部航迹之间的相对几何关系通常是稳定的,至少在一段时间内是稳定的,因此有助于改进T2TASB。在本文中,我们提出了一种概率方法,称为局部航迹几何保留(LTGP)算法,该算法利用了航迹的几何关系。假设一个传感器的局部航迹由高斯混合模型(GMM)质心表示,将另一个传感器的相应局部航迹拟合到第一个传感器的局部航迹。在这方面,构建了一个几何描述符连通性矩阵来利用这些航迹的相对几何关系。将航迹关联问题表述为具有局部航迹几何约束的最大似然估计问题,并开发了一种期望最大化(EM)算法来求解。仿真结果表明,所提出的方法比现有方法具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07e8/7085508/80dd505e4108/sensors-20-01412-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验