Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
Biochem Biophys Res Commun. 2014 Jun 20;449(1):26-31. doi: 10.1016/j.bbrc.2014.04.131. Epub 2014 May 4.
phosphoethanolamine cytidylyltransferase (ECT) is a key enzyme in the CDP-ethanolamine branch of the Kennedy pathway, which is the primary pathway of phosphatidylethanolamine (PE) synthesis in mammalian cells. Here, the enzymatic properties of recombinant human ECT (hECT) were characterized. The catalytic reaction of hECT obeyed Michaelis-Menten kinetics with respect to both CTP and phosphoethanolamine. hECT is composed of two tandem cytidylyltransferase (CT) domains as ECTs of other organisms. The histidines, especially the first histidine, in the CTP-binding motif HxGH in the N-terminal CT domain were critical for its catalytic activity in vitro, while those in the C-terminal CT domain were not. Overexpression of the wild-type hECT and hECT mutants containing amino acid substitutions in the HxGH motif in the C-terminal CT domain suppressed the growth defect of the Saccharomyces cerevisiae mutant of ECT1 encoding ECT in the absence of a PE supply via the decarboxylation of phosphatidylserine, but overexpression of hECT mutants of the N-terminal CT domain did not. These results suggest that the N-terminal CT domain of hECT contributes to its catalytic reaction, but C-terminal CT domain does not.
磷酸乙醇胺胞苷转移酶(ECT)是 Kennedy 途径中 CDP-乙醇胺分支的关键酶,是哺乳动物细胞中磷脂酰乙醇胺(PE)合成的主要途径。在这里,我们对重组人 ECT(hECT)的酶学性质进行了表征。hECT 的催化反应对 CTP 和磷酸乙醇胺均符合米氏动力学。hECT 由两个串联的胞苷转移酶(CT)结构域组成,这与其他生物体的 ECT 相同。N 端 CT 结构域中 CTP 结合基序 HxGH 中的组氨酸,特别是第一个组氨酸,对其体外催化活性至关重要,而 C 端 CT 结构域中的组氨酸则不重要。野生型 hECT 和 hECT 突变体的过表达,这些突变体在 C 端 CT 结构域中的 HxGH 基序中含有氨基酸取代,可通过磷脂酰丝氨酸的脱羧作用,在没有 PE 供应的情况下,抑制编码 ECT 的酿酒酵母突变体的生长缺陷,而 N 端 CT 结构域的 hECT 突变体的过表达则不能。这些结果表明,hECT 的 N 端 CT 结构域有助于其催化反应,但 C 端 CT 结构域则没有。