Suppr超能文献

斑马鱼肌腱和韧带祖细胞的发育。

The development of zebrafish tendon and ligament progenitors.

机构信息

Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopaedic Surgery, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.

出版信息

Development. 2014 May;141(10):2035-45. doi: 10.1242/dev.104067.

Abstract

Despite the importance of tendons and ligaments for transmitting movement and providing stability to the musculoskeletal system, their development is considerably less well understood than that of the tissues they serve to connect. Zebrafish have been widely used to address questions in muscle and skeletal development, yet few studies describe their tendon and ligament tissues. We have analyzed in zebrafish the expression of several genes known to be enriched in mammalian tendons and ligaments, including scleraxis (scx), collagen 1a2 (col1a2) and tenomodulin (tnmd), or in the tendon-like myosepta of the zebrafish (xirp2a). Co-expression studies with muscle and cartilage markers demonstrate the presence of scxa, col1a2 and tnmd at sites between the developing muscle and cartilage, and xirp2a at the myotendinous junctions. We determined that the zebrafish craniofacial tendon and ligament progenitors are neural crest derived, as in mammals. Cranial and fin tendon progenitors can be induced in the absence of differentiated muscle or cartilage, although neighboring muscle and cartilage are required for tendon cell maintenance and organization, respectively. By contrast, myoseptal scxa expression requires muscle for its initiation. Together, these data suggest a conserved role for muscle in tendon development. Based on the similarities in gene expression, morphology, collagen ultrastructural arrangement and developmental regulation with that of mammalian tendons, we conclude that the zebrafish tendon populations are homologous to their force-transmitting counterparts in higher vertebrates. Within this context, the zebrafish model can be used to provide new avenues for studying tendon biology in a vertebrate genetic system.

摘要

尽管肌腱和韧带对于传递运动和为肌肉骨骼系统提供稳定性至关重要,但它们的发育过程却远不如它们所连接的组织那样被充分理解。斑马鱼被广泛用于解决肌肉和骨骼发育方面的问题,但很少有研究描述它们的肌腱和韧带组织。我们在斑马鱼中分析了几个已知在哺乳动物肌腱和韧带上富集的基因的表达,包括 Scleraxis(scx)、胶原 1a2(col1a2)和腱调蛋白(tnmd),或在斑马鱼的腱样肌膜(xirp2a)上。与肌肉和软骨标志物的共表达研究表明,scxa、col1a2 和 tnmd 存在于发育中的肌肉和软骨之间的部位,而 xirp2a 存在于肌肌腱连接处。我们确定,与哺乳动物一样,斑马鱼的颅面肌腱和韧带祖先是神经嵴衍生的。尽管相邻的肌肉和软骨分别是肌腱细胞维持和组织所必需的,但在没有分化的肌肉或软骨的情况下,可以诱导颅面和鳍状肌腱祖细胞。相比之下,肌膜 scxa 的表达需要肌肉才能启动。这些数据表明,肌肉在肌腱发育中起着保守的作用。基于与哺乳动物肌腱相似的基因表达、形态、胶原超微结构排列和发育调控,我们得出结论,斑马鱼的肌腱群体与其在高等脊椎动物中的力传递对应物同源。在这种情况下,斑马鱼模型可用于在脊椎动物遗传系统中研究肌腱生物学提供新途径。

相似文献

1
The development of zebrafish tendon and ligament progenitors.
Development. 2014 May;141(10):2035-45. doi: 10.1242/dev.104067.
2
Scleraxis genes are required for normal musculoskeletal development and for rib growth and mineralization in zebrafish.
FASEB J. 2019 Aug;33(8):9116-9130. doi: 10.1096/fj.201802654RR. Epub 2019 May 17.
3
Development and maintenance of tendons and ligaments.
Development. 2021 Apr 15;148(8). doi: 10.1242/dev.186916. Epub 2021 Apr 16.
4
Understanding Tendons: Lessons from Transgenic Mouse Models.
Stem Cells Dev. 2018 Sep 1;27(17):1161-1174. doi: 10.1089/scd.2018.0121. Epub 2018 Aug 10.
5
Direct conversion of tenocytes into chondrocytes by Sox9.
Exp Cell Res. 2012 Aug 1;318(13):1492-507. doi: 10.1016/j.yexcr.2012.04.002. Epub 2012 Apr 10.
6
Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons.
Development. 2007 Jul;134(14):2697-708. doi: 10.1242/dev.001933. Epub 2007 Jun 13.
9
Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament.
Development. 2013 Jun;140(11):2280-8. doi: 10.1242/dev.096354. Epub 2013 Apr 24.
10
Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis.
Stem Cells Dev. 2012 Apr 10;21(6):846-58. doi: 10.1089/scd.2011.0150. Epub 2011 Oct 11.

引用本文的文献

1
Transcription factor Mohawk regulates tendon/ligament development: A narrative review.
Medicine (Baltimore). 2025 Jul 25;104(30):e43044. doi: 10.1097/MD.0000000000043044.
5
A conserved transcription factor regulatory program promotes tendon fate.
Dev Cell. 2024 Dec 2;59(23):3106-3123.e12. doi: 10.1016/j.devcel.2024.08.006. Epub 2024 Aug 30.
6
The proteasome subunit psmb1 is essential for craniofacial cartilage maturation and morphogenesis.
JCI Insight. 2024 Jul 18;9(16):e181723. doi: 10.1172/jci.insight.181723.
7
Animal models of tendon calcification: Past, present, and future.
Animal Model Exp Med. 2024 Aug;7(4):471-483. doi: 10.1002/ame2.12439. Epub 2024 Jun 17.
8
Standardization of zebrafish drug testing parameters for muscle diseases.
Dis Model Mech. 2024 Jan 1;17(1). doi: 10.1242/dmm.050339. Epub 2024 Jan 18.
9
Single-cell analysis reveals distinct fibroblast plasticity during tenocyte regeneration in zebrafish.
Sci Adv. 2023 Nov 17;9(46):eadi5771. doi: 10.1126/sciadv.adi5771. Epub 2023 Nov 15.
10
Endogenous tenocyte activation underlies the regenerative capacity of the adult zebrafish tendon.
NPJ Regen Med. 2023 Sep 19;8(1):52. doi: 10.1038/s41536-023-00328-w.

本文引用的文献

1
Feeding mechanics of teleost fishes (Labridae; Perciformes): A test of four-bar linkage models.
J Morphol. 1990 Sep;205(3):269-295. doi: 10.1002/jmor.1052050304.
2
Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae).
J Morphol. 1996 Aug;229(2):121-160. doi: 10.1002/(SICI)1097-4687(199608)229:2<121::AID-JMOR1>3.0.CO;2-4.
3
Early fish myoseptal cells: insights from the trout and relationships with amniote axial tenocytes.
PLoS One. 2014 Mar 12;9(3):e91876. doi: 10.1371/journal.pone.0091876. eCollection 2014.
4
Fgf receptors Fgfr1a and Fgfr2 control the function of pharyngeal endoderm in late cranial cartilage development.
Differentiation. 2013 Nov-Dec;86(4-5):192-206. doi: 10.1016/j.diff.2013.07.006. Epub 2013 Oct 29.
5
Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors.
Development. 2013 Jul;140(13):2680-90. doi: 10.1242/dev.093906. Epub 2013 May 29.
6
barx1 represses joints and promotes cartilage in the craniofacial skeleton.
Development. 2013 Jul;140(13):2765-75. doi: 10.1242/dev.090639. Epub 2013 May 22.
7
Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament.
Development. 2013 Jun;140(11):2280-8. doi: 10.1242/dev.096354. Epub 2013 Apr 24.
8
Mechanics of snout expansion in suction-feeding seahorses: musculoskeletal force transmission.
J Exp Biol. 2013 Feb 1;216(Pt 3):407-17. doi: 10.1242/jeb.074658. Epub 2012 Oct 4.
9
New perspectives on pharyngeal dorsoventral patterning in development and evolution of the vertebrate jaw.
Dev Biol. 2012 Nov 15;371(2):121-35. doi: 10.1016/j.ydbio.2012.08.026. Epub 2012 Aug 30.
10
Embryonic fate map of first pharyngeal arch structures in the sox10: kaede zebrafish transgenic model.
J Craniofac Surg. 2012 Sep;23(5):1333-7. doi: 10.1097/SCS.0b013e318260f20b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验