Suppr超能文献

微通道收缩中粘弹性流体电泳的意外颗粒振动。

An unexpected particle oscillation for electrophoresis in viscoelastic fluids through a microchannel constriction.

机构信息

Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, USA.

Department of Chemical and Biomolecular Engineering, and Center for Advanced Engineering Fibers and Films, Clemson University, Clemson, South Carolina 29634-0909, USA.

出版信息

Biomicrofluidics. 2014 Mar 3;8(2):021802. doi: 10.1063/1.4866853. eCollection 2014 Mar.

Abstract

Electrophoresis plays an important role in many applications, which, however, has so far been extensively studied in Newtonian fluids only. This work presents the first experimental investigation of particle electrophoresis in viscoelastic polyethylene oxide (PEO) solutions through a microchannel constriction under pure DC electric fields. An oscillatory particle motion is observed in the constriction region, which is distinctly different from the particle behavior in a polymer-free Newtonian fluid. This stream-wise particle oscillation continues until a sufficient number of particles form a chain to pass through the constriction completely. It is speculated that such an unexpected particle oscillating phenomenon is a consequence of the competition between electrokinetic force and viscoelastic force induced in the constriction. The electric field magnitude, particle size, and PEO concentration are all found to positively affect this viscoelasticity-related particle oscillation due to their respective influences on the two forces.

摘要

电泳在许多应用中起着重要的作用,但迄今为止,它仅在牛顿流体中得到了广泛的研究。本工作通过在纯直流电场下在微通道收缩处首次实验研究了粘弹性聚乙烯氧化物(PEO)溶液中的颗粒电泳。在收缩区域观察到颗粒的振荡运动,这与无聚合物牛顿流体中的颗粒行为明显不同。这种流向的颗粒振荡一直持续到足够数量的颗粒形成一条链完全通过收缩处。据推测,这种意想不到的颗粒振荡现象是在收缩处产生的电动力量和粘弹性力之间竞争的结果。实验发现,电场强度、颗粒大小和 PEO 浓度都由于它们各自对两种力的影响而对这种与粘弹性有关的颗粒振荡产生积极影响。

相似文献

1
An unexpected particle oscillation for electrophoresis in viscoelastic fluids through a microchannel constriction.
Biomicrofluidics. 2014 Mar 3;8(2):021802. doi: 10.1063/1.4866853. eCollection 2014 Mar.
2
Viscoelastic effects on electrokinetic particle focusing in a constricted microchannel.
Biomicrofluidics. 2015 Jan 22;9(1):014108. doi: 10.1063/1.4906798. eCollection 2015 Jan.
3
Electroosmotic flow of non-Newtonian fluids in a constriction microchannel.
Electrophoresis. 2019 May;40(10):1387-1394. doi: 10.1002/elps.201800315. Epub 2018 Nov 6.
4
Insulator-based dielectrophoretic focusing and trapping of particles in non-Newtonian fluids.
Electrophoresis. 2021 Nov;42(21-22):2154-2161. doi: 10.1002/elps.202100005. Epub 2021 May 13.
5
Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel.
Micromachines (Basel). 2020 Nov 11;11(11):998. doi: 10.3390/mi11110998.
6
Particle Size-Dependent Electrophoresis in Polymer Solutions.
Anal Chem. 2024 Feb 7. doi: 10.1021/acs.analchem.3c05655.
7
Investigation of particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid.
Electrophoresis. 2016 Aug;37(15-16):2147-55. doi: 10.1002/elps.201600102. Epub 2016 Jun 1.
8
9
Fluid rheological effects on streaming dielectrophoresis in a post-array microchannel.
Electrophoresis. 2022 Mar;43(5-6):717-723. doi: 10.1002/elps.202100270. Epub 2021 Nov 21.

引用本文的文献

1
Three-Dimensional Reservoir-Based Dielectrophoresis (rDEP) for Enhanced Particle Enrichment.
Micromachines (Basel). 2018 Mar 10;9(3):123. doi: 10.3390/mi9030123.
2
Deformability-Based Electrokinetic Particle Separation.
Micromachines (Basel). 2016 Sep 20;7(9):170. doi: 10.3390/mi7090170.
3
Viscoelastic effects on electrokinetic particle focusing in a constricted microchannel.
Biomicrofluidics. 2015 Jan 22;9(1):014108. doi: 10.1063/1.4906798. eCollection 2015 Jan.

本文引用的文献

1
Hydrodynamic mechanisms of cell and particle trapping in microfluidics.
Biomicrofluidics. 2013 Apr 5;7(2):21501. doi: 10.1063/1.4799787.
2
Experimental characterisation of a novel viscoelastic rectifier design.
Biomicrofluidics. 2012 Dec 10;6(4):44112. doi: 10.1063/1.4769781. eCollection 2012.
3
Multiplex particle focusing via hydrodynamic force in viscoelastic fluids.
Sci Rep. 2013 Nov 19;3:3258. doi: 10.1038/srep03258.
4
Electrokinetics of non-Newtonian fluids: a review.
Adv Colloid Interface Sci. 2013 Dec;201-202:94-108. doi: 10.1016/j.cis.2013.09.001. Epub 2013 Sep 23.
5
DNA-based highly tunable particle focuser.
Nat Commun. 2013;4:2567. doi: 10.1038/ncomms3567.
6
Velocity oscillations and stop-go cycles: the trajectory of an object settling in a cornstarch suspension.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042301. doi: 10.1103/PhysRevE.87.042301. Epub 2013 Apr 1.
7
Analytical solution of two-fluid electro-osmotic flows of viscoelastic fluids.
J Colloid Interface Sci. 2013 Apr 1;395:277-86. doi: 10.1016/j.jcis.2012.12.013. Epub 2012 Dec 22.
8
The apparent hydrodynamic slip of polymer solutions and its implications in electrokinetics.
Electrophoresis. 2013 Mar;34(5):622-30. doi: 10.1002/elps.201200476. Epub 2013 Feb 13.
9
Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel.
Electrophoresis. 2013 Mar;34(5):662-7. doi: 10.1002/elps.201200507. Epub 2013 Feb 5.
10
Numerical modeling of Joule heating effects in insulator-based dielectrophoresis microdevices.
Electrophoresis. 2013 Mar;34(5):674-83. doi: 10.1002/elps.201200501.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验