Suppr超能文献

基于强度差的声定位尖峰神经网络模型

Spiking neural network model of sound localization using the interaural intensity difference.

出版信息

IEEE Trans Neural Netw Learn Syst. 2012 Apr;23(4):574-86. doi: 10.1109/TNNLS.2011.2178317.

Abstract

In this paper, a spiking neural network (SNN) architecture to simulate the sound localization ability of the mammalian auditory pathways using the interaural intensity difference cue is presented. The lateral superior olive was the inspiration for the architecture, which required the integration of an auditory periphery (cochlea) model and a model of the medial nucleus of the trapezoid body. The SNN uses leaky integrate-and-fire excitatory and inhibitory spiking neurons, facilitating synapses and receptive fields. Experimentally derived head-related transfer function (HRTF) acoustical data from adult domestic cats were employed to train and validate the localization ability of the architecture, training used the supervised learning algorithm called the remote supervision method to determine the azimuthal angles. The experimental results demonstrate that the architecture performs best when it is localizing high-frequency sound data in agreement with the biology, and also shows a high degree of robustness when the HRTF acoustical data is corrupted by noise.

摘要

本文提出了一种尖峰神经网络(SNN)架构,该架构使用两耳强度差线索模拟哺乳动物听觉通路的声音定位能力。外侧上橄榄核是该架构的灵感来源,它需要整合听觉外围(耳蜗)模型和梯形核中间模型。SNN 使用漏积分和放电兴奋性和抑制性尖峰神经元,促进突触和感受野。实验得出的成年家猫的头相关传递函数(HRTF)声学数据被用于训练和验证该架构的定位能力,训练使用远程监督方法等监督学习算法来确定方位角。实验结果表明,该架构在定位高频声音数据时表现最佳,并且在 HRTF 声学数据受到噪声干扰时也具有很高的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验