IEEE Trans Neural Netw Learn Syst. 2013 Dec;24(12):2013-26. doi: 10.1109/TNNLS.2013.2271356.
Universal blind image quality assessment (IQA) metrics that can work for various distortions are of great importance for image processing systems, because neither ground truths are available nor the distortion types are aware all the time in practice. Existing state-of-the-art universal blind IQA algorithms are developed based on natural scene statistics (NSS). Although NSS-based metrics obtained promising performance, they have some limitations: 1) they use either the Gaussian scale mixture model or generalized Gaussian density to predict the nonGaussian marginal distribution of wavelet, Gabor, or discrete cosine transform coefficients. The prediction error makes the extracted features unable to reflect the change in nonGaussianity (NG) accurately. The existing algorithms use the joint statistical model and structural similarity to model the local dependency (LD). Although this LD essentially encodes the information redundancy in natural images, these models do not use information divergence to measure the LD. Although the exponential decay characteristic (EDC) represents the property of natural images that large/small wavelet coefficient magnitudes tend to be persistent across scales, which is highly correlated with image degradations, it has not been applied to the universal blind IQA metrics; and 2) all the universal blind IQA metrics use the same similarity measure for different features for learning the universal blind IQA metrics, though these features have different properties. To address the aforementioned problems, we propose to construct new universal blind quality indicators using all the three types of NSS, i.e., the NG, LD, and EDC, and incorporating the heterogeneous property of multiple kernel learning (MKL). By analyzing how different distortions affect these statistical properties, we present two universal blind quality assessment models, NSS global scheme and NSS two-step scheme. In the proposed metrics: 1) we exploit the NG of natural images using the original marginal distribution of wavelet coefficients; 2) we measure correlations between wavelet coefficients using mutual information defined in information theory; 3) we use features of EDC in universal blind image quality prediction directly; and 4) we introduce MKL to measure the similarity of different features using different kernels. Thorough experimental results on the Laboratory for Image and Video Engineering database II and the Tampere Image Database2008 demonstrate that both metrics are in remarkably high consistency with the human perception, and overwhelm representative universal blind algorithms as well as some standard full reference quality indexes for various types of distortions.
通用盲图像质量评估(IQA)指标对于图像处理系统非常重要,因为在实践中既没有可用的地面真实,也不知道失真类型。现有的最先进的通用盲 IQA 算法是基于自然场景统计(NSS)开发的。虽然基于 NSS 的指标取得了有希望的性能,但它们存在一些局限性:1)它们要么使用高斯混合模型,要么使用广义高斯密度来预测小波、Gabor 或离散余弦变换系数的非高斯边缘分布。预测误差使得提取的特征无法准确反映非高斯性(NG)的变化。现有的算法使用联合统计模型和结构相似性来模拟局部依赖性(LD)。尽管这种 LD 本质上编码了自然图像中的信息冗余,但这些模型没有使用信息散度来测量 LD。虽然指数衰减特性(EDC)代表了自然图像的属性,即大/小波系数幅度在不同尺度上往往具有持续性,这与图像退化高度相关,但它尚未应用于通用盲 IQA 指标;2)所有通用盲 IQA 指标都使用相同的相似性度量来学习不同特征的通用盲 IQA 指标,尽管这些特征具有不同的属性。为了解决上述问题,我们提出使用所有三种类型的 NSS(即 NG、LD 和 EDC)以及多核学习(MKL)的异构性来构建新的通用盲质量指标。通过分析不同失真如何影响这些统计特性,我们提出了两种通用盲质量评估模型,即 NSS 全局方案和 NSS 两步方案。在所提出的指标中:1)我们利用小波系数的原始边缘分布来利用自然图像的 NG;2)我们使用信息论中定义的互信息来测量小波系数之间的相关性;3)我们直接在通用盲图像质量预测中使用 EDC 的特征;4)我们引入 MKL 来使用不同的核测量不同特征的相似性。在实验室图像和视频工程数据库 II 和坦佩雷图像数据库 2008 上的大量实验结果表明,这两种指标都与人类感知高度一致,并且优于代表性的通用盲算法以及各种类型失真的一些标准全参考质量指标。