Suppr超能文献

基于梯度幅值和拉普拉斯特征联合统计的盲图像质量评估。

Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features.

出版信息

IEEE Trans Image Process. 2014 Nov;23(11):4850-62. doi: 10.1109/TIP.2014.2355716. Epub 2014 Sep 8.

Abstract

Blind image quality assessment (BIQA) aims to evaluate the perceptual quality of a distorted image without information regarding its reference image. Existing BIQA models usually predict the image quality by analyzing the image statistics in some transformed domain, e.g., in the discrete cosine transform domain or wavelet domain. Though great progress has been made in recent years, BIQA is still a very challenging task due to the lack of a reference image. Considering that image local contrast features convey important structural information that is closely related to image perceptual quality, we propose a novel BIQA model that utilizes the joint statistics of two types of commonly used local contrast features: 1) the gradient magnitude (GM) map and 2) the Laplacian of Gaussian (LOG) response. We employ an adaptive procedure to jointly normalize the GM and LOG features, and show that the joint statistics of normalized GM and LOG features have desirable properties for the BIQA task. The proposed model is extensively evaluated on three large-scale benchmark databases, and shown to deliver highly competitive performance with state-of-the-art BIQA models, as well as with some well-known full reference image quality assessment models.

摘要

盲图像质量评估(BIQA)旨在评估失真图像的感知质量,而无需有关其参考图像的信息。现有的 BIQA 模型通常通过在某些变换域(例如离散余弦变换域或小波域)中分析图像统计信息来预测图像质量。尽管近年来取得了很大的进展,但由于缺乏参考图像,BIQA 仍然是一项极具挑战性的任务。考虑到图像局部对比度特征传达了与图像感知质量密切相关的重要结构信息,我们提出了一种新的 BIQA 模型,该模型利用了两种常用局部对比度特征的联合统计信息:1)梯度幅度(GM)图和 2)高斯的拉普拉斯(LOG)响应。我们采用自适应过程对 GM 和 LOG 特征进行联合归一化,并表明归一化 GM 和 LOG 特征的联合统计量具有 BIQA 任务的理想特性。所提出的模型在三个大型基准数据库上进行了广泛评估,结果表明,与最先进的 BIQA 模型以及一些著名的全参考图像质量评估模型相比,该模型具有很高的竞争力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验