Suppr超能文献

基于全局感知的无参考图像质量评估。

No-reference image quality assessment based on global awareness.

机构信息

School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.

Henan Engineering Research Center of Digital Pathology and Artificial Intelligence Diagnosis, Luoyang, China.

出版信息

PLoS One. 2024 Oct 7;19(10):e0310206. doi: 10.1371/journal.pone.0310206. eCollection 2024.

Abstract

In the field of computer vision, the application of hand-crafted as well as computer-learning-based methods in the field of image quality assessment has yielded remarkable results. However, in the field of no-reference image distortion, it is still challenging to accurately perceive and determine the quality of an image. To address the difficulties of Image Quality Assessment (IQA) in the field of authentic distorted images, we consider the use of the Swin Transformer (ST) to extract features. To enable the model to focus on both spatial and channel information of features, we design a plug-and-play Global Self-Attention Block (GSAB). At the same time, we introduce a Transformer block in the model to enhance the model's ability to capture long-range dependencies. Finally, we derive the prediction of image quality scores through a Dual-Branching structure. Our method is experimented on four synthetic datasets as well as two authentic datasets, and the results of the experiments are weighted according to the size of the datasets, and the results show that our method outperforms all the current methods and works well in the Generalization ability test, which proves that our method has a good generalization ability. The code will be posted subsequently at https://github.com/yanggege-new/NR-IQA-based-on-global-awareness.

摘要

在计算机视觉领域,手工制作和基于计算机学习的方法在图像质量评估领域的应用已经取得了显著的成果。然而,在无参考图像失真领域,准确感知和确定图像质量仍然具有挑战性。为了解决真实失真图像领域的图像质量评估(IQA)的困难,我们考虑使用 Swin Transformer(ST)来提取特征。为了使模型能够关注特征的空间和通道信息,我们设计了一个即插即用的全局自注意力块(GSAB)。同时,我们在模型中引入了 Transformer 块,以增强模型捕捉长距离依赖的能力。最后,我们通过双分支结构来预测图像质量得分。我们的方法在四个合成数据集和两个真实数据集上进行了实验,并根据数据集的大小对实验结果进行加权,实验结果表明,我们的方法优于所有现有的方法,并且在泛化能力测试中表现良好,这证明了我们的方法具有良好的泛化能力。代码将随后发布在 https://github.com/yanggege-new/NR-IQA-based-on-global-awareness 上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfd5/11457998/e220b15735f2/pone.0310206.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验