Suppr超能文献

用于动态环境中认知导航的神经网络架构。

Neural network architecture for cognitive navigation in dynamic environments.

出版信息

IEEE Trans Neural Netw Learn Syst. 2013 Dec;24(12):2075-87. doi: 10.1109/TNNLS.2013.2271645.

Abstract

Navigation in time-evolving environments with moving targets and obstacles requires cognitive abilities widely demonstrated by even simplest animals. However, it is a long-standing challenging problem for artificial agents. Cognitive autonomous robots coping with this problem must solve two essential tasks: 1) understand the environment in terms of what may happen and how I can deal with this and 2) learn successful experiences for their further use in an automatic subconscious way. The recently introduced concept of compact internal representation (CIR) provides the ground for both the tasks. CIR is a specific cognitive map that compacts time-evolving situations into static structures containing information necessary for navigation. It belongs to the class of global approaches, i.e., it finds trajectories to a target when they exist but also detects situations when no solution can be found. Here we extend the concept of situations with mobile targets. Then using CIR as a core, we propose a closed-loop neural network architecture consisting of conscious and subconscious pathways for efficient decision-making. The conscious pathway provides solutions to novel situations if the default subconscious pathway fails to guide the agent to a target. Employing experiments with roving robots and numerical simulations, we show that the proposed architecture provides the robot with cognitive abilities and enables reliable and flexible navigation in realistic time-evolving environments. We prove that the subconscious pathway is robust against uncertainty in the sensory information. Thus if a novel situation is similar but not identical to the previous experience (because of, e.g., noisy perception) then the subconscious pathway is able to provide an effective solution.

摘要

在具有移动目标和障碍物的时变环境中导航需要广泛的认知能力,即使是最简单的动物也能表现出来。然而,这对于人工智能代理来说是一个长期存在的挑战问题。应对此问题的认知自主机器人必须解决两个基本任务:1)理解环境中可能发生的事情以及我如何应对这些事情,2)以自动潜意识的方式学习成功的经验以备将来使用。最近引入的紧凑内部表示(CIR)概念为这两个任务提供了基础。CIR 是一种特定的认知图,它将时变情况压缩为静态结构,其中包含导航所需的信息。它属于全局方法的类别,即,它在存在轨迹时找到目标的轨迹,但也检测到无法找到解决方案的情况。在这里,我们扩展了具有移动目标的情况的概念。然后,我们使用 CIR 作为核心,提出了一种闭环神经网络架构,包括意识和潜意识路径,用于高效决策。如果默认的潜意识路径不能引导代理到达目标,则意识路径为新情况提供解决方案。通过使用漫游机器人进行实验和数值模拟,我们表明所提出的架构为机器人提供了认知能力,并使其能够在现实的时变环境中可靠且灵活地导航。我们证明潜意识路径对感官信息中的不确定性具有鲁棒性。因此,如果新情况与以前的经验相似但不相同(例如,由于噪声感知),则潜意识路径能够提供有效的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验