Suppr超能文献

用于协作行动的预测:使用广义认知地图在社交环境中导航

Prediction-for-CompAction: navigation in social environments using generalized cognitive maps.

作者信息

Villacorta-Atienza Jose A, Calvo Carlos, Makarov Valeri A

机构信息

Department of Applied Mathematics, Universidad Complutense de Madrid, Avda Complutense s/n, 28040, Madrid, Spain.

出版信息

Biol Cybern. 2015 Jun;109(3):307-20. doi: 10.1007/s00422-015-0644-8. Epub 2015 Feb 13.

Abstract

The ultimate navigation efficiency of mobile robots in human environments will depend on how we will appraise them: merely as impersonal machines or as human-like agents. In the latter case, an agent may take advantage of the cooperative collision avoidance, given that it possesses recursive cognition, i.e., the agent's decisions depend on the decisions made by humans that in turn depend on the agent's decisions. To deal with this high-level cognitive skill, we propose a neural network architecture implementing Prediction-for-CompAction paradigm. The network predicts possible human-agent collisions and compacts the time dimension by projecting a given dynamic situation into a static map. Thereby emerging compact cognitive map can be readily used as a "dynamic GPS" for planning actions or mental evaluation of the convenience of cooperation in a given context. We provide numerical evidence that cooperation yields additional room for more efficient navigation in cluttered pedestrian flows, and the agent can choose path to the target significantly shorter than a robot treated by humans as a functional machine. Moreover, the navigation safety, i.e., the chances to avoid accidental collisions, increases under cooperation. Remarkably, these benefits yield no additional load to the mean society effort. Thus, the proposed strategy is socially compliant, and the humanoid agent can behave as "one of us."

摘要

移动机器人在人类环境中的最终导航效率将取决于我们如何对它们进行评估

仅仅将它们视为没有人情味的机器,还是将它们视为人性化的智能体。在后一种情况下,一个智能体可以利用协作式避碰,前提是它具备递归认知能力,也就是说,智能体的决策取决于人类做出的决策,而人类的决策反过来又取决于智能体的决策。为了处理这种高级认知技能,我们提出了一种实现预测换行动范式的神经网络架构。该网络预测可能的人机碰撞,并通过将给定的动态场景投影到静态地图中来压缩时间维度。由此产生的紧凑认知地图可以很容易地用作“动态全球定位系统”,用于在给定情境下规划行动或对合作便利性进行心理评估。我们提供了数值证据,证明在拥挤的人流中,协作能为更高效的导航提供额外空间,并且智能体选择的通往目标的路径比被人类视为功能性机器的机器人要短得多。此外,在协作情况下,导航安全性,即避免意外碰撞的几率会增加。值得注意的是,这些好处不会给社会平均努力带来额外负担。因此,所提出的策略符合社会规范,类人智能体可以表现得像“我们中的一员”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验