文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

定量通量分析揭示了叶酸依赖性 NADPH 的产生。

Quantitative flux analysis reveals folate-dependent NADPH production.

机构信息

1] Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA [2].

1] Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA [2].

出版信息

Nature. 2014 Jun 12;510(7504):298-302. doi: 10.1038/nature13236. Epub 2014 May 4.


DOI:10.1038/nature13236
PMID:24805240
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4104482/
Abstract

ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP(+) to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP(+) and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

摘要

在动物中,ATP 是用于机械和电气工作(例如肌肉收缩或神经元放电)的主要能量来源。对于化学工作,NADPH 也起着同样重要的作用,它为氧化还原防御和还原生物合成提供动力。从葡萄糖产生 NADPH 的最直接途径是氧化戊糖磷酸途径,而苹果酸酶有时也很重要。虽然糖酵解和氧化磷酸化产生 ATP 的相对贡献已经得到了广泛的分析,但 NADPH 代谢的类似分析却一直缺乏。在这里,我们通过液相色谱-质谱法直接证明了追踪标记底物中的氘进入 NADPH 的能力,并将这种方法与碳标记和数学建模相结合,以测量 NADPH 通量。在增殖细胞中,细胞质 NADPH 的最大贡献者是氧化戊糖磷酸途径。令人惊讶的是,来自丝氨酸驱动的一碳代谢的贡献几乎与之相当,其中亚甲基四氢叶酸到 10-甲酰四氢叶酸的氧化与 NADP(+)还原为 NADPH 偶联。此外,追踪线粒体一碳代谢揭示了 10-甲酰四氢叶酸的完全氧化以产生 NADPH。由于叶酸代谢以前没有被认为是 NADPH 的产生者,因此通过敲低亚甲基四氢叶酸脱氢酶(MTHFD)基因来确认其功能意义。胞质或线粒体 MTHFD 同工酶的耗竭导致细胞 NADPH/NADP(+)和还原/氧化型谷胱甘肽比(GSH/GSSG)降低以及细胞对氧化应激的敏感性增加。因此,尽管叶酸代谢对增殖细胞的重要性早已得到认可,并归因于其为核酸合成产生一碳单位的功能,但该途径的另一个关键功能是产生还原能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/9d178a47a085/nihms573616f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/9be9b772b772/nihms573616f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/7ebe33c23bed/nihms573616f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/4b0d99ff3d82/nihms573616f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/6e389fe7c924/nihms573616f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/f5f055eeed76/nihms573616f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/4e34618defa3/nihms573616f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/e3eaca32c623/nihms573616f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/d945e6bf9efc/nihms573616f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/fee372011d44/nihms573616f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/dbd7fc678601/nihms573616f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/bfa2389c6952/nihms573616f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/6e166355749d/nihms573616f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/683a96d142f4/nihms573616f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/9d178a47a085/nihms573616f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/9be9b772b772/nihms573616f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/7ebe33c23bed/nihms573616f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/4b0d99ff3d82/nihms573616f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/6e389fe7c924/nihms573616f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/f5f055eeed76/nihms573616f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/4e34618defa3/nihms573616f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/e3eaca32c623/nihms573616f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/d945e6bf9efc/nihms573616f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/fee372011d44/nihms573616f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/dbd7fc678601/nihms573616f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/bfa2389c6952/nihms573616f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/6e166355749d/nihms573616f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/683a96d142f4/nihms573616f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f8/4104482/9d178a47a085/nihms573616f4.jpg

相似文献

[1]
Quantitative flux analysis reveals folate-dependent NADPH production.

Nature. 2014-5-4

[2]
Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway.

Cell Metab. 2016-6-14

[3]
Aldh1l2 knockout mouse metabolomics links the loss of the mitochondrial folate enzyme to deregulation of a lipid metabolism observed in rare human disorder.

Hum Genomics. 2020-11-9

[4]
NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism.

Nat Metab. 2019-3

[5]
Cytosolic and mitochondrial NADPH fluxes are independently regulated.

Nat Chem Biol. 2023-7

[6]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[7]
Role of Mitochondrial and Cytosolic Folylpolyglutamate Synthetase in One-Carbon Metabolism and Antitumor Efficacy of Mitochondrial-Targeted Antifolates.

Mol Pharmacol. 2024-9-17

[8]
Short-Term Memory Impairment

2025-1

[9]
Folic acid with or without vitamin B12 for cognition and dementia.

Cochrane Database Syst Rev. 2003

[10]
Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis.

Cochrane Database Syst Rev. 2013-5-31

引用本文的文献

[1]
Cellular pan-chain acyl-CoA profiling reveals SLC25A42/SLC25A16 in mitochondrial CoA import and metabolism.

Nat Metab. 2025-9-9

[2]
Genome-wide selection signal analysis reveals the adaptability of Tibetan sheep to high altitudes.

Front Vet Sci. 2025-8-14

[3]
Polyclonality and metabolic heterogeneity in a colorectal tumor model.

iScience. 2025-7-10

[4]
Radiotherapy elicits immunogenic cell death and metabolic shifts in the tumor microenvironment: implications for immunotherapy.

Int J Med Sci. 2025-7-11

[5]
Mitochondrial metabolism and cancer therapeutic innovation.

Signal Transduct Target Ther. 2025-8-4

[6]
MTHFD2 in healthy and cancer cells: Canonical and non-canonical functions.

NPJ Metab Health Dis. 2024-3-15

[7]
Bone metabolism - an underappreciated player.

NPJ Metab Health Dis. 2024-7-1

[8]
Ribose-5-phosphate metabolism protects from antibiotic lethality.

mBio. 2025-8-13

[9]
Development of a novel liquid chromatography-tandem mass spectrometry based enzymatic assay of 5,10-methylenetetrahydrofolate reductase.

Sci Rep. 2025-7-2

[10]
Update of the sideroflexin (SLC56) gene family.

Hum Genomics. 2025-6-20

本文引用的文献

[1]
Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer.

Nat Commun. 2014

[2]
Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells.

Cell Death Dis. 2013-10-24

[3]
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway.

Nature. 2013-3-27

[4]
Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence.

Nature. 2013-1-13

[5]
Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells.

Nature. 2012-12-16

[6]
Serine is a natural ligand and allosteric activator of pyruvate kinase M2.

Nature. 2012-10-14

[7]
Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons.

J Cereb Blood Flow Metab. 2012-6-20

[8]
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.

Science. 2012-5-25

[9]
Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation.

Proc Natl Acad Sci U S A. 2012-4-16

[10]
IsoCor: correcting MS data in isotope labeling experiments.

Bioinformatics. 2012-3-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索