Seregina Tatyana, Shakulov Rustem, Quarta Giulio, Shatalin Konstantin, Sklyarova Svetlana, Petrushanko Irina, Fedulov Artemy P, Ivanov Alexander V, Mitkevich Vladimir, Makarov Alexander, Mironov Alexander S, Nudler Evgeny
Department of Molecular Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia.
Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA.
mBio. 2025 Aug 13;16(8):e0065425. doi: 10.1128/mbio.00654-25. Epub 2025 Jul 2.
In , ribose-5-phosphate (R5P) biosynthesis occurs via two distinct pathways: an oxidative branch of the pentose phosphate pathway (PPP) originating from glucose-6-phosphate, and a reversed non-oxidative branch originating from fructose-6-phosphate, which relies on transaldolases TalA and TalB. Remarkably, we found that disrupting the oxidative PPP branch by deleting the gene significantly increased bacterial susceptibility to killing by a variety of antibiotics. Surprisingly, additional mutations in the and genes further enhanced bacterial sensitivity to oxidative stress and antibiotic-mediated killing though they had little impact on the minimal inhibitory concentrations (MICs). The hypersensitivity observed in the mutant could be fully reversed by the processes that either utilize R5P or limited its accumulation. Specifically, activating the purine biosynthetic regulon or inhibiting nucleoside catabolism via gene inactivation, which blocks the conversion of ribose-1-phosphate to R5P, restored bacterial tolerance. Furthermore, enhancing the biosynthesis of cell wall component ADP-heptose from sedoheptulose-7-phosphate suppressed antibiotic killing of the mutant. Biochemical analysis confirmed a direct link between elevated intracellular R5P levels and increased bacterial susceptibility to antibiotics-induced killing. These findings suggest that targeting the PPP could be a promising strategy for developing new therapeutic approaches aimed at potentiating clinically relevant antibiotics.IMPORTANCERecent studies have revealed the crucial role of bacterial cell's metabolic status in its susceptibility to the lethal action of antibacterial drugs. However, there is still no clear understanding of which key metabolic nodes are optimal targets to improve the effectiveness of bacterial infection treatment. Our study establishes that the disruption of the canonical pentose phosphate pathway induces one-way anabolic synthesis of pentose phosphates (aPPP) in cells, increasing the killing efficiency of various antibiotics. It is also demonstrated that the activation of ribose-5-phosphate utilization processes restores bacterial tolerance to antibiotics. We consider the synthesis of ribose-5-phosphate to be one of the determining factors of bacterial cell stress resistance. Understanding bacterial metabolic pathways, particularly the aPPP's role in antibiotic sensitivity, offers insights for developing novel adjuvant therapeutic strategies to enhance antibiotic potency.
在[具体细菌名称]中,5-磷酸核糖(R5P)的生物合成通过两条不同的途径进行:一条是磷酸戊糖途径(PPP)的氧化分支,起源于6-磷酸葡萄糖;另一条是反向非氧化分支,起源于6-磷酸果糖,该分支依赖转醛醇酶TalA和TalB。值得注意的是,我们发现通过删除[相关基因名称]基因破坏氧化PPP分支会显著增加细菌对多种抗生素杀伤作用的敏感性。令人惊讶的是,[其他相关基因名称]基因中的额外突变进一步增强了细菌对氧化应激和抗生素介导杀伤的敏感性,尽管它们对最低抑菌浓度(MIC)影响很小。在[相关基因名称]突变体中观察到的超敏反应可以通过利用R5P或限制其积累的过程完全逆转。具体而言,激活嘌呤生物合成调节子或通过[相关基因名称]基因失活抑制核苷分解代谢,这会阻止1-磷酸核糖向R5P的转化,从而恢复细菌的耐受性。此外,从景天庚酮糖-7-磷酸增强细胞壁成分ADP-庚糖的生物合成可抑制[相关基因名称]突变体的抗生素杀伤作用。生化分析证实细胞内R5P水平升高与细菌对抗生素诱导杀伤的敏感性增加之间存在直接联系。这些发现表明,靶向PPP可能是开发旨在增强临床相关抗生素疗效的新治疗方法的有前景策略。
重要性
最近的研究揭示了细菌细胞代谢状态在其对抗菌药物致死作用的敏感性中的关键作用。然而,对于哪些关键代谢节点是提高细菌感染治疗效果的最佳靶点仍没有清晰的认识。我们的研究表明,经典磷酸戊糖途径的破坏在[具体细菌名称]细胞中诱导了戊糖磷酸的单向合成代谢(aPPP),提高了各种抗生素的杀伤效率。还证明了5-磷酸核糖利用过程的激活恢复了细菌对抗生素的耐受性。我们认为5-磷酸核糖的合成是细菌细胞应激抗性的决定性因素之一。了解细菌代谢途径,特别是aPPP在抗生素敏感性中的作用,为开发增强抗生素效力的新型辅助治疗策略提供了见解。