Suppr超能文献

染色质流体动力学

Chromatin hydrodynamics.

作者信息

Bruinsma Robijn, Grosberg Alexander Y, Rabin Yitzhak, Zidovska Alexandra

机构信息

Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California.

Department of Physics and Center for Soft Matter Research, New York University, New York, New York.

出版信息

Biophys J. 2014 May 6;106(9):1871-81. doi: 10.1016/j.bpj.2014.03.038.

Abstract

Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated cells, we present a hydrodynamic theory-the two-fluid model-in which the content of a nucleus is described as a chromatin solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent) while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple model-the Maxwell fluid-for the complex modulus, although there is some discrepancy in terms of the wavevector dependence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity.

摘要

继最近在活的分化细胞的细胞核内观察到染色质的大规模相关运动之后,我们提出了一种流体动力学理论——双流体模型,其中细胞核的内容物被描述为一种染色质溶液,核质充当溶剂,染色质纤维充当溶质。这个系统既受到被动热涨落的影响,也受到与自由能消耗相关的主动标量和矢量事件的影响,比如ATP水解。标量事件驱动纵向粘弹性模式(其中染色质纤维相对于溶剂移动),而矢量事件产生横向模式(其中染色质纤维与溶剂一起移动)。使用线性响应方法,我们推导出了响应函数的显式表达式,这些表达式将染色质密度和速度相关函数与主动源的相应相关函数以及染色质溶液的复粘弹性模量联系起来。然后我们推导出了染色质速度场的流谱密度的一般表达式。我们用这个理论分析了本文作者之一及其同事最近获得的实验结果。我们发现,对于天然染色质和ATP耗尽的染色质,实验数据的时间依赖性都可以用一个简单的模型——麦克斯韦流体来很好地拟合复模量,尽管在波矢依赖性方面存在一些差异。ATP耗尽细胞的热涨落主要是纵向的。ATP活跃的细胞表现出由力偶极驱动的强烈横向长波长速度涨落。波数大于几微米倒数的涨落主要由浓度涨落主导,其谱与热涨落相同,但强度增加。

相似文献

1
Chromatin hydrodynamics.
Biophys J. 2014 May 6;106(9):1871-81. doi: 10.1016/j.bpj.2014.03.038.
2
Symmetry-based classification of forces driving chromatin dynamics.
Soft Matter. 2022 Nov 2;18(42):8134-8146. doi: 10.1039/d2sm00840h.
3
Model chromatin flows: numerical analysis of linear and nonlinear hydrodynamics inside a sphere.
Eur Phys J E Soft Matter. 2023 Aug 4;46(8):69. doi: 10.1140/epje/s10189-023-00327-1.
4
Extensile motor activity drives coherent motions in a model of interphase chromatin.
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11442-11447. doi: 10.1073/pnas.1807073115. Epub 2018 Oct 22.
6
In vivo interaction of human MCM heterohexameric complexes with chromatin. Possible involvement of ATP.
J Biol Chem. 1997 Apr 18;272(16):10928-35. doi: 10.1074/jbc.272.16.10928.
7
Nearly incompressible fluids: hydrodynamics and large scale inhomogeneity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 2):026302. doi: 10.1103/PhysRevE.74.026302. Epub 2006 Aug 16.
8
Mesoscale simulations of hydrodynamic squirmer interactions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041921. doi: 10.1103/PhysRevE.82.041921. Epub 2010 Oct 26.
9
Spatial correlations of hydrodynamic fluctuations in simple fluids under shear flow: A mesoscale simulation study.
Phys Rev E. 2017 Dec;96(6-1):062617. doi: 10.1103/PhysRevE.96.062617. Epub 2017 Dec 28.
10
Significance of thermal fluctuations and hydrodynamic interactions in receptor-ligand-mediated adhesive dynamics of a spherical particle in wall-bound shear flow.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):022302. doi: 10.1103/PhysRevE.91.022302. Epub 2015 Feb 5.

引用本文的文献

1
Differential Crosslinking and Contractile Motors Drive Nuclear Chromatin Compaction.
bioRxiv. 2025 Jul 27:2025.07.24.666416. doi: 10.1101/2025.07.24.666416.
3
Tracing the Chromatin: From 3C to Live-Cell Imaging.
Chem Biomed Imaging. 2024 Jun 25;2(10):659-682. doi: 10.1021/cbmi.4c00033. eCollection 2024 Oct 28.
4
Transcription-dependent mobility of single genes and genome-wide motions in live human cells.
Nat Commun. 2024 Oct 22;15(1):8879. doi: 10.1038/s41467-024-51149-4.
5
Interplay of chromatin organization and mechanics of the cell nucleus.
Biophys J. 2024 Oct 1;123(19):3386-3396. doi: 10.1016/j.bpj.2024.08.003. Epub 2024 Aug 8.
6
Crumpled polymer with loops recapitulates key features of chromosome organization.
Phys Rev X. 2023 Oct-Dec;13(4). doi: 10.1103/physrevx.13.041029. Epub 2023 Nov 13.
7
Four-Dimensional Mesoscale Liquid Model of Nucleus Resolves Chromatin's Radial Organization.
PRX Life. 2024 Jan-Mar;2(1). doi: 10.1103/PRXLife.2.013006. Epub 2024 Jan 30.
8
The scales, mechanisms, and dynamics of the genome architecture.
Sci Adv. 2024 Apr 12;10(15):eadm8167. doi: 10.1126/sciadv.adm8167. Epub 2024 Apr 10.
9
Transcription-induced active forces suppress chromatin motion.
Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2307309121. doi: 10.1073/pnas.2307309121. Epub 2024 Mar 15.
10
Topology-Based Detection and Tracking of Deadlocks Reveal Aging of Active Ring Melts.
ACS Macro Lett. 2024 Jan 10;13(2):124-129. doi: 10.1021/acsmacrolett.3c00567.

本文引用的文献

1
Micron-scale coherence in interphase chromatin dynamics.
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15555-60. doi: 10.1073/pnas.1220313110. Epub 2013 Sep 9.
2
Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes.
Cell. 2013 Aug 1;154(3):490-503. doi: 10.1016/j.cell.2013.07.011.
3
Correlated spatio-temporal fluctuations in chromatin compaction states characterize stem cells.
Biophys J. 2013 Feb 5;104(3):553-64. doi: 10.1016/j.bpj.2012.12.033.
4
Tracking the mechanical dynamics of human embryonic stem cell chromatin.
Epigenetics Chromatin. 2012 Dec 21;5(1):20. doi: 10.1186/1756-8935-5-20.
5
Spontaneous circulation of confined active suspensions.
Phys Rev Lett. 2012 Oct 19;109(16):168105. doi: 10.1103/PhysRevLett.109.168105.
6
Dynamics of passive and active particles in the cell nucleus.
PLoS One. 2012;7(10):e45843. doi: 10.1371/journal.pone.0045843. Epub 2012 Oct 15.
7
Cytoplasmic streaming in Drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15109-14. doi: 10.1073/pnas.1203575109. Epub 2012 Sep 4.
8
A fractal model for nuclear organization: current evidence and biological implications.
Nucleic Acids Res. 2012 Oct;40(18):8783-92. doi: 10.1093/nar/gks586. Epub 2012 Jul 11.
9
Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci.
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7338-43. doi: 10.1073/pnas.1119505109. Epub 2012 Apr 19.
10
Human mitotic chromosome structure: what happened to the 30-nm fibre?
EMBO J. 2012 Apr 4;31(7):1621-3. doi: 10.1038/emboj.2012.66. Epub 2012 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验