Gansner Emden R, Kobourov Stephen G
IEEE Comput Graph Appl. 2010 Nov-Dec;30(6):54-66. doi: 10.1109/MCG.2010.101.
Information visualization is essential in making sense of large datasets. Often, high-dimensional data are visualized as a collection of points in 2D space through dimensionality reduction techniques. However, these traditional methods often don't capture the underlying structural information, clustering, and neighborhoods well. GMap is a practical algorithmic framework for visualizing relational data with geographic-like maps. This approach is effective in various domains.
信息可视化对于理解大型数据集至关重要。通常,高维数据通过降维技术被可视化为二维空间中的点集。然而,这些传统方法往往不能很好地捕捉潜在的结构信息、聚类和邻域关系。GMap是一个用于使用类地理地图可视化关系数据的实用算法框架。这种方法在各个领域都很有效。
IEEE Comput Graph Appl. 2010
IEEE Trans Cybern. 2012-7-3
IEEE Trans Vis Comput Graph. 2009
IEEE Trans Vis Comput Graph. 2013-12
Neural Comput. 2004-12
IEEE Trans Vis Comput Graph. 2012-9
IEEE Trans Vis Comput Graph. 2008
Cent Eur J Oper Res. 2021
BMC Bioinformatics. 2019-4-15
BMC Bioinformatics. 2014-7-10
J Med Internet Res. 2013-6-24