Suppr超能文献

同相和反相同步在具有延迟耦合 FitzHugh-Nagumo 系统应用的延迟耦合系统中。

Inphase and antiphase synchronization in a delay-coupled system with applications to a delay-coupled FitzHugh-Nagumo system.

出版信息

IEEE Trans Neural Netw Learn Syst. 2012 Oct;23(10):1659-70. doi: 10.1109/TNNLS.2012.2209459.

Abstract

A time delay is inevitable in the coupled system and is an essential property of the coupling, which cannot be neglected in many realistic coupled systems. In this paper, we first study the existence of a Hopf bifurcation induced by coupling time delay and then investigate the influence of coupling time delay on the patterns of Hopf-bifurcating periodic oscillations. How the coupling time delay leads to complex scenarios of synchronized inphase or antiphase oscillations is analytically investigated. As an example, we study the delay-coupled FitzHugh-Nagumo system. We find conditional stability, absolute stability, and stability switches of the steady state provoked by the coupling time delay. Then we investigate the inphase and antiphase synchronized periodic solutions induced by delay, and determine the direction and stability of these bifurcating periodic orbits by employing the center manifold reduction and normal form theory. We find that in the region where stability switches occur, there exist synchronization transitions, i.e., synchronized dynamics can be switched from inphase (antiphase) to antiphase (inphase) and back to inphase (antiphase) and so on just by progressive increase of the coupling time delay.

摘要

在耦合系统中,时滞是不可避免的,而且是耦合的一个基本特性,在许多实际的耦合系统中不能被忽略。在本文中,我们首先研究了由耦合时滞引起的 Hopf 分岔的存在性,然后研究了耦合时滞对 Hopf 分岔周期振荡模式的影响。我们分析了耦合时滞如何导致同相或反相同步振荡的复杂情况。作为一个例子,我们研究了延迟耦合 FitzHugh-Nagumo 系统。我们发现了由耦合时滞引起的稳态的条件稳定性、绝对稳定性和稳定性转换。然后我们研究了由延迟引起的同相和反相同步周期解,并通过中心流形约化和规范型理论确定了这些分岔周期轨道的方向和稳定性。我们发现,在发生稳定性转换的区域中,存在同步转换,即同步动力学可以从同相(反相)切换到反相(同相),然后再切换回同相(反相)等等,只需逐步增加耦合时滞即可。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验