Suppr超能文献

用于非平稳独立成分分析的源信号外观的马尔可夫和半马尔可夫切换

Markov and Semi-Markov switching of source appearances for nonstationary independent component analysis.

作者信息

Hirayama Jun-ichiro, Maeda Shin-ichi, Ishii Shin

机构信息

Graduate School of Information Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.

出版信息

IEEE Trans Neural Netw. 2007 Sep;18(5):1326-42. doi: 10.1109/tnn.2007.895829.

Abstract

Independent component analysis (ICA) is currently the most popularly used approach to blind source separation (BSS), the problem of recovering unknown source signals when their mixtures are observed but the actual mixing process is unknown. Many ICA algorithms assume that a fixed set of source signals consistently exists in mixtures throughout the time-series to be examined. However, real-world signals often have such difficult nonstationarity that each source signal abruptly appears or disappears, thus the set of active sources dynamically changes with time. In this paper, we propose switching ICA (SwICA), which focuses on such situations. The proposed approach is based on the noisy ICA formulated as a generative model. We employ a special type of hidden Markov model (HMM) to represent such prior knowledge that the source may abruptly appear or disappear with time. The special HMM setting t hen provides an effect ofvariable selection in a dynamic way. We use the variational Bayes (VB) method to derive an effective approximation of Bayesian inference for this model. In simulation experiments using artificial and realistic source signals, the proposed method exhibited performance superior to existing methods, especially in the presence of noise. The compared methods include the natural-gradient ICA with a nonholonomic constraint, and the existing ICA method incorporating an HMM source model, which aims to deal with general nonstationarities that may exist in source signals. In addition, the proposed method could successfully recover the source signals even when the total number of true sources was overestimated or was larger than that of mixtures. We also propose a modification of the basic Markov model into a semi-Markov model, and show that the semi-Markov one is more effective for robust estimation of the source appearance.

摘要

独立成分分析(ICA)是目前最常用于盲源分离(BSS)的方法,盲源分离是指在观测到源信号的混合信号但实际混合过程未知的情况下,恢复未知源信号的问题。许多ICA算法假设在整个待检查的时间序列中,混合信号中始终存在一组固定的源信号。然而,现实世界中的信号往往具有非常困难的非平稳性,即每个源信号会突然出现或消失,因此活跃源的集合会随时间动态变化。在本文中,我们提出了切换ICA(SwICA),它专注于此类情况。所提出的方法基于被公式化为生成模型的带噪ICA。我们采用一种特殊类型的隐马尔可夫模型(HMM)来表示源信号可能随时间突然出现或消失的这种先验知识。然后,这种特殊的HMM设置以动态方式提供了变量选择的效果。我们使用变分贝叶斯(VB)方法来推导该模型贝叶斯推断的有效近似。在使用人工和现实源信号的模拟实验中,所提出的方法表现出优于现有方法的性能,尤其是在存在噪声的情况下。所比较的方法包括具有非完整约束的自然梯度ICA,以及现有的结合HMM源模型的ICA方法,后者旨在处理源信号中可能存在的一般非平稳性。此外,即使真实源的总数被高估或大于混合信号的数量,所提出的方法也能成功恢复源信号。我们还提出将基本马尔可夫模型修改为半马尔可夫模型,并表明半马尔可夫模型对于源信号出现情况的稳健估计更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验