Gou Jianping, Zhan Yongzhao, Wan Min, Shen Xiangjun, Chen Jinfu, Du Lan
School of Computer Science and Telecommunication Engineering, JiangSu University, ZhenJiang, JiangSu 212013, China.
School of Mathematics and Computer Engineering, Xihua University, Chengdu, Sichuan 610039, China.
ScientificWorldJournal. 2014 Feb 20;2014:186749. doi: 10.1155/2014/186749. eCollection 2014.
We develop a novel maximum neighborhood margin discriminant projection (MNMDP) technique for dimensionality reduction of high-dimensional data. It utilizes both the local information and class information to model the intraclass and interclass neighborhood scatters. By maximizing the margin between intraclass and interclass neighborhoods of all points, MNMDP cannot only detect the true intrinsic manifold structure of the data but also strengthen the pattern discrimination among different classes. To verify the classification performance of the proposed MNMDP, it is applied to the PolyU HRF and FKP databases, the AR face database, and the UCI Musk database, in comparison with the competing methods such as PCA and LDA. The experimental results demonstrate the effectiveness of our MNMDP in pattern classification.
我们开发了一种新颖的最大邻域边际判别投影(MNMDP)技术,用于高维数据的降维。它利用局部信息和类别信息来对类内和类间邻域散布进行建模。通过最大化所有点的类内和类间邻域之间的边际,MNMDP不仅可以检测数据的真实内在流形结构,还可以增强不同类别之间的模式判别能力。为了验证所提出的MNMDP的分类性能,将其应用于香港理工大学心率变异性(HRF)和面部关键点(FKP)数据库、AR人脸数据库以及UCI麝香数据库,并与主成分分析(PCA)和线性判别分析(LDA)等竞争方法进行比较。实验结果证明了我们的MNMDP在模式分类中的有效性。