College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China.
College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China.
ISA Trans. 2018 Dec;83:42-52. doi: 10.1016/j.isatra.2018.08.013. Epub 2018 Aug 17.
In this paper, an adaptive predictive optimal control scheme for a class of block strict-feedback nonlinear systems is proposed by integrating the adaptive dynamic programming (ADP) technique, predictive control and backstepping method. The basic idea is that designing the virtual and actual controls of backstepping is the optimized solutions of corresponding subsystems. Firstly, the virtual control input is derived for the subsystem by utilizing ADP technique, in which a critic neural network (NN) is constructed to approximate the solution of the associated Hamilton-Jacobi-Bellman (HJB) equation. Then, to further reduce the computational complexity, the actual controller is given in an analytical form by using continuous-time predictive approach. Theoretical analysis guarantees the stability of the closed-loop system by Lyapunov method. Finally, the effectiveness of the proposed adaptive predictive optimal control scheme is validated through an application to missile-target engagement.
本文提出了一种基于自适应动态规划(ADP)技术、预测控制和反推方法的一类块状严格反馈非线性系统的自适应预测最优控制方案。其基本思想是,通过 ADP 技术设计反推的虚拟和实际控制是相应子系统的最优解。首先,利用 ADP 技术为子系统推导出虚拟控制输入,其中构建了一个评论家神经网络(NN)来近似相关的哈密顿-雅可比-贝尔曼(HJB)方程的解。然后,为了进一步降低计算复杂度,通过使用连续时间预测方法以解析形式给出实际控制器。通过 Lyapunov 方法的理论分析保证了闭环系统的稳定性。最后,通过将导弹-目标交战应用实例验证了所提出的自适应预测最优控制方案的有效性。