Suppr超能文献

基于生物群体智能优化算法的四旋翼飞行器(QUAV)轨迹跟踪双环控制与状态预测分析

Dual-loop control and state prediction analysis of QUAV trajectory tracking based on biological swarm intelligent optimization algorithm.

作者信息

Zou Zuoming, Yang Shuming, Zhao Liang

机构信息

Xi'an Jiaotong University, Xi'an, 710061, Shaanxi , China.

School of Information Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

出版信息

Sci Rep. 2024 Aug 17;14(1):19091. doi: 10.1038/s41598-024-69911-5.

Abstract

Quadrotor unmanned aerial vehicles (QUAVs) have attracted significant research focus due to their outstanding Vertical Take-Off and Landing (VTOL) capabilities. This research addresses the challenge of maintaining precise trajectory tracking in QUAV systems when faced with external disturbances by introducing a robust, two-tier control system based on sliding mode technology. For position control, this approach utilizes a virtual sliding mode control signal to enhance tracking precision and includes adaptive mechanisms to adjust for changes in mass and external disruptions. In controlling the attitude subsystem, the method employs a sliding mode control framework that secures system stability and compliance with intermediate commands, eliminating the reliance on precise models of the inertia matrix. Furthermore, this study incorporates a deep learning approach that combines Particle Swarm Optimization (PSO) with the Long Short-Term Memory (LSTM) network to foresee and mitigate trajectory tracking errors, thereby significantly enhancing the reliability and safety of mission operations. The robustness and effectiveness of this innovative control strategy are validated through comprehensive numerical simulations.

摘要

四旋翼无人机(QUAVs)因其出色的垂直起降(VTOL)能力而吸引了大量的研究关注。本研究通过引入基于滑模技术的强大的两层控制系统,解决了四旋翼无人机系统在面对外部干扰时保持精确轨迹跟踪的挑战。对于位置控制,该方法利用虚拟滑模控制信号来提高跟踪精度,并包括自适应机制以适应质量变化和外部干扰。在控制姿态子系统时,该方法采用滑模控制框架,确保系统稳定性并符合中间指令,消除了对惯性矩阵精确模型的依赖。此外,本研究采用了一种深度学习方法,将粒子群优化(PSO)与长短期记忆(LSTM)网络相结合,以预测和减轻轨迹跟踪误差,从而显著提高任务操作的可靠性和安全性。通过全面的数值模拟验证了这种创新控制策略的鲁棒性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f76/11330499/5a0844d2b92a/41598_2024_69911_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验