Zou Zuoming, Yang Shuming, Zhao Liang
Xi'an Jiaotong University, Xi'an, 710061, Shaanxi , China.
School of Information Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
Sci Rep. 2024 Aug 17;14(1):19091. doi: 10.1038/s41598-024-69911-5.
Quadrotor unmanned aerial vehicles (QUAVs) have attracted significant research focus due to their outstanding Vertical Take-Off and Landing (VTOL) capabilities. This research addresses the challenge of maintaining precise trajectory tracking in QUAV systems when faced with external disturbances by introducing a robust, two-tier control system based on sliding mode technology. For position control, this approach utilizes a virtual sliding mode control signal to enhance tracking precision and includes adaptive mechanisms to adjust for changes in mass and external disruptions. In controlling the attitude subsystem, the method employs a sliding mode control framework that secures system stability and compliance with intermediate commands, eliminating the reliance on precise models of the inertia matrix. Furthermore, this study incorporates a deep learning approach that combines Particle Swarm Optimization (PSO) with the Long Short-Term Memory (LSTM) network to foresee and mitigate trajectory tracking errors, thereby significantly enhancing the reliability and safety of mission operations. The robustness and effectiveness of this innovative control strategy are validated through comprehensive numerical simulations.
四旋翼无人机(QUAVs)因其出色的垂直起降(VTOL)能力而吸引了大量的研究关注。本研究通过引入基于滑模技术的强大的两层控制系统,解决了四旋翼无人机系统在面对外部干扰时保持精确轨迹跟踪的挑战。对于位置控制,该方法利用虚拟滑模控制信号来提高跟踪精度,并包括自适应机制以适应质量变化和外部干扰。在控制姿态子系统时,该方法采用滑模控制框架,确保系统稳定性并符合中间指令,消除了对惯性矩阵精确模型的依赖。此外,本研究采用了一种深度学习方法,将粒子群优化(PSO)与长短期记忆(LSTM)网络相结合,以预测和减轻轨迹跟踪误差,从而显著提高任务操作的可靠性和安全性。通过全面的数值模拟验证了这种创新控制策略的鲁棒性和有效性。