IEEE Trans Neural Netw Learn Syst. 2013 Jul;24(7):1156-60. doi: 10.1109/TNNLS.2013.2251746.
The Vapnik-Chervonenkis (VC) dimension is used to measure the complexity of a function class and plays an important role in a variety of fields, including artificial neural networks and machine learning. One major concern is the relationship between the VC dimension and inherent characteristics of the corresponding function class. According to Sauer's lemma, if the VC dimension of an indicator function class F is equal to D, the cardinality of the set F(S1(N)) will not be larger than Σ(d=0)(D)C(N)(d). Therefore, there naturally arises a question about the VC dimension of an indicator function class: what kinds of elements will be contained in the function class F if F has a finite VC dimension? In this brief, we answer the above question. First, we investigate the structure of the function class F when the cardinality of the set F(S1(N)) reaches the maximum value Σ(d=0)(D)C(N)(d). Based on the derived result, we then figure out what kinds of elements will be contained in F if F has a finite VC dimension.
Vapnik-Chervonenkis (VC) 维数用于衡量函数类的复杂度,在包括人工神经网络和机器学习在内的多个领域中都发挥着重要作用。一个主要关注点是 VC 维数与相应函数类固有特性之间的关系。根据 Sauer 引理,如果指示函数类 F 的 VC 维数等于 D,则集合 F(S1(N)) 的基数不会大于 Σ(d=0)(D)C(N)(d)。因此,自然而然地会出现一个关于指示函数类 VC 维数的问题:如果 F 的 VC 维数有限,那么 F 中会包含哪些元素?在本篇简要介绍中,我们回答了上述问题。首先,我们研究了当集合 F(S1(N))的基数达到最大值 Σ(d=0)(D)C(N)(d)时,函数类 F 的结构。基于推导出的结果,我们进一步确定了如果 F 的 VC 维数有限,那么 F 中会包含哪些元素。