IEEE Trans Neural Netw Learn Syst. 2012 Sep;23(9):1461-72. doi: 10.1109/TNNLS.2012.2204773.
In this paper, we introduce the discretized-Vapnik-Chervonenkis (VC) dimension for studying the complexity of a real function class, and then analyze properties of real function classes and neural networks. We first prove that a countable traversal set is enough to achieve the VC dimension for a real function class, whereas its classical definition states that the traversal set is the output range of the function class. Based on this result, we propose the discretized-VC dimension defined by using a countable traversal set consisting of rational numbers in the range of a real function class. By using the discretized-VC dimension, we show that if a real function class has a finite VC dimension, only a finite traversal set is needed to achieve the VC dimension. We then point out that the real function classes, which have the infinite VC dimension, can be grouped into two categories: TYPE-A and TYPE-B. Subsequently, based on the obtained results, we discuss the relationship between the VC dimension of an indicator-output network and that of the real-output network, when both networks have the same structure except for the output activation functions. Finally, we present the risk bound based on the discretized-VC dimension for a real function class that has infinite VC dimension and is of TYPE-A. We prove that, with such a function class, the empirical risk minimization (ERM) principle for the function class is still consistent with overwhelming probability. This is a development of the existing knowledge that the ERM learning is consistent if and only if the function class has a finite VC dimension.
在本文中,我们引入离散化的 Vapnik-Chervonenkis(VC)维数来研究实函数类的复杂性,然后分析实函数类和神经网络的性质。我们首先证明了对于一个实函数类,一个可数遍历集足以达到 VC 维数,而其经典定义则认为遍历集是函数类的输出范围。基于这个结果,我们提出了用由实函数类的范围中的有理数组成的可数遍历集来定义离散化 VC 维数。通过使用离散化 VC 维数,我们表明如果一个实函数类具有有限的 VC 维数,则只需要一个有限的遍历集即可达到 VC 维数。然后,我们指出具有无限 VC 维数的实函数类可以分为两类:A 类和 B 类。随后,基于所得到的结果,我们讨论了当两个网络具有相同的结构(除了输出激活函数外)时,指示输出网络和实输出网络的 VC 维数之间的关系。最后,我们给出了具有无限 VC 维数且属于 A 类的实函数类的基于离散化 VC 维数的风险界。我们证明了,对于这样的函数类,函数类的经验风险最小化(ERM)原理仍然具有压倒性的概率一致性。这是对现有知识的扩展,即 ERM 学习是一致的,当且仅当函数类具有有限的 VC 维数。