Suppr超能文献

基于量子的人工神经网络优化算法。

Quantum-based algorithm for optimizing artificial neural networks.

出版信息

IEEE Trans Neural Netw Learn Syst. 2013 Aug;24(8):1266-78. doi: 10.1109/TNNLS.2013.2249089.

Abstract

This paper presents a quantum-based algorithm for evolving artificial neural networks (ANNs). The aim is to design an ANN with few connections and high classification performance by simultaneously optimizing the network structure and the connection weights. Unlike most previous studies, the proposed algorithm uses quantum bit representation to codify the network. As a result, the connectivity bits do not indicate the actual links but the probability of the existence of the connections, thus alleviating mapping problems and reducing the risk of throwing away a potential candidate. In addition, in the proposed model, each weight space is decomposed into subspaces in terms of quantum bits. Thus, the algorithm performs a region by region exploration, and evolves gradually to find promising subspaces for further exploitation. This is helpful to provide a set of appropriate weights when evolving the network structure and to alleviate the noisy fitness evaluation problem. The proposed model is tested on four benchmark problems, namely breast cancer and iris, heart, and diabetes problems. The experimental results show that the proposed algorithm can produce compact ANN structures with good generalization ability compared to other algorithms.

摘要

本文提出了一种基于量子的人工神经网络(ANN)进化算法。其目的是通过同时优化网络结构和连接权重,设计一个连接较少但分类性能较高的 ANN。与大多数先前的研究不同,所提出的算法使用量子位表示来对网络进行编码。因此,连接位并不表示实际的连接,而是连接存在的概率,从而减轻了映射问题,并降低了丢弃潜在候选者的风险。此外,在所提出的模型中,每个权重空间都根据量子位分解为子空间。因此,算法会进行区域探索,并逐渐进化,以找到有前途的子空间进行进一步开发。这有助于在进化网络结构时提供一组适当的权重,并减轻嘈杂的适应度评估问题。所提出的模型在四个基准问题上进行了测试,即乳腺癌和虹膜、心脏和糖尿病问题。实验结果表明,与其他算法相比,所提出的算法可以生成具有良好泛化能力的紧凑 ANN 结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验