Suppr超能文献

比较模型预测肝细胞癌手术后生活质量:一项前瞻性研究。

Comparison of Models for Predicting Quality of Life After Surgical Resection of Hepatocellular Carcinoma: a Prospective Study.

机构信息

Department of General Surgery, Chi Mei Medical Center, Liouying, Taiwan.

Department of General Surgery, Chi Mei Medical Center, Tainan, Taiwan.

出版信息

J Gastrointest Surg. 2018 Oct;22(10):1724-1731. doi: 10.1007/s11605-018-3833-7. Epub 2018 Jun 18.

Abstract

BACKGROUND

The essential issue of internal validity has not been adequately addressed in prediction models such as artificial neural network (ANN), support vector machine (SVM), Gaussian process regression (GPR), and multiple linear regression (MLR) models.

METHODS

This prospective study compared the accuracy of these four models in predicting quality of life (QOL) after hepatic resection received by 332 patients with hepatocellular carcinoma (HCC) during 2012-2015. An estimation subset was used to train the models, and a validation subset was used to evaluate their performance. Sensitivity score approach was also used to assess the relative significance of input parameters in the system models.

RESULTS

The ANN model had significantly higher performance indicators compared to the SVM, GPR, and MLR models (P < 0.05). Additionally, the ANN prediction of QOL at 6 months after hepatic resection significantly correlated with age, gender, marital status, Charlson comorbidity index (CCI) score, chemotherapy, radiotherapy, hospital volume, surgeon volume, and preoperational functional status (P < 0.05). Preoperational functional status was the most influential (sensitive) variable affecting sixth-month QOL followed by surgeon volume, hospital volume, age, and CCI score.

CONCLUSIONS

The comparisons showed that, in preoperative and postoperative healthcare consultations with HCC surgery candidates, QOL at 6 months post-surgery should be estimated with an ANN model rather than with SVM, GPR, or MLR models. The best QOL predictors identified in this study can also be used to educate candidates for HCC surgery in the expected course of recovery and other surgical outcomes.

摘要

背景

在人工神经网络(ANN)、支持向量机(SVM)、高斯过程回归(GPR)和多元线性回归(MLR)等预测模型中,内部有效性的基本问题尚未得到充分解决。

方法

本前瞻性研究比较了这四种模型在预测 2012-2015 年期间 332 例肝细胞癌(HCC)患者接受肝切除术后生活质量(QOL)的准确性。采用估计子集对模型进行训练,验证子集对其性能进行评估。还采用敏感性评分方法评估系统模型中输入参数的相对重要性。

结果

与 SVM、GPR 和 MLR 模型相比,ANN 模型的性能指标显著更高(P<0.05)。此外,ANN 对肝切除术后 6 个月 QOL 的预测与年龄、性别、婚姻状况、Charlson 合并症指数(CCI)评分、化疗、放疗、医院容量、外科医生数量以及术前功能状态显著相关(P<0.05)。术前功能状态是影响 6 个月 QOL 的最具影响力(敏感)变量,其次是外科医生数量、医院容量、年龄和 CCI 评分。

结论

这些比较表明,在与 HCC 手术候选者进行术前和术后医疗咨询时,应使用 ANN 模型而不是 SVM、GPR 或 MLR 模型来估计术后 6 个月的 QOL。本研究中确定的最佳 QOL 预测因子也可用于教育 HCC 手术候选者预期的恢复过程和其他手术结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验