Lamprecht Constanze, Hinterdorfer Peter, Ebner Andreas
University of Kiel, Institute of Materials Science Biocompatible Nanomaterials , Kaiserstr.2, 24143 Kiel , Germany.
Expert Opin Drug Deliv. 2014 Aug;11(8):1237-53. doi: 10.1517/17425247.2014.917078. Epub 2014 May 8.
The therapeutic effects of medicinal drugs not only depend on their properties, but also on effective transport to the target receptor. Here we highlight recent developments in this discipline and show applications of atomic force microscopy (AFM) that enable us to track the effects of drugs and the effectiveness of nanoparticle delivery at the single molecule level.
Physiological AFM imaging enables visualization of topographical changes to cells as a result of drug exposure and allows observation of cellular responses that yield morphological changes. When we upgrade the regular measuring tip to a molecular biosensor, it enables investigation of functional changes at the molecular level via single molecule force spectroscopy.
Biosensing AFM techniques have generated powerful tools to monitor drug delivery in (living) cells. While technical developments in actual AFM methods have simplified measurements at relevant physiological conditions, understanding both the biological and technical background is still a crucial factor. However, due to its potential impact, we expect the number of application-based biosensing AFM techniques to further increase in the near future.
药物的治疗效果不仅取决于其性质,还取决于能否有效地转运至靶受体。在此,我们着重介绍该领域的最新进展,并展示原子力显微镜(AFM)的应用,这些应用使我们能够在单分子水平上追踪药物的作用以及纳米颗粒递送的有效性。
生理AFM成像能够可视化药物暴露导致的细胞表面形貌变化,并允许观察产生形态变化的细胞反应。当我们将常规测量探针升级为分子生物传感器时,它能够通过单分子力谱研究分子水平的功能变化。
生物传感AFM技术为监测(活)细胞中的药物递送提供了强大工具。虽然实际AFM方法的技术发展简化了在相关生理条件下的测量,但理解生物学和技术背景仍然是一个关键因素。然而,由于其潜在影响,我们预计在不久的将来,基于应用的生物传感AFM技术数量将进一步增加。