Lageix Sebastien, Rothenburg Stefan, Dever Thomas E, Hinnebusch Alan G
Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America.
Kansas State University, Division of Biology, Manhattan, Kansas, United States of America.
PLoS Genet. 2014 May 8;10(5):e1004326. doi: 10.1371/journal.pgen.1004326. eCollection 2014 May.
The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2α, from yeast to mammals. The Gcn2 kinase domain (KD) is inherently inactive and requires allosteric stimulation by adjoining regulatory domains. Gcn2 contains a pseudokinase domain (YKD) required for high-level eIF2α phosphorylation in amino acid starved yeast cells; however, the role of the YKD in KD activation was unknown. We isolated substitutions of evolutionarily conserved YKD amino acids that impair Gcn2 activation without reducing binding of the activating ligand, uncharged tRNA, to the histidyl-tRNA synthetase-related domain of Gcn2. Several such Gcn- substitutions cluster in predicted helices E and I (αE and αI) of the YKD. We also identified Gcd- substitutions, evoking constitutive activation of Gcn2, mapping in αI of the YKD. Interestingly, αI Gcd- substitutions enhance YKD-KD interactions in vitro, whereas Gcn- substitutions in αE and αI suppress both this effect and the constitutive activation of Gcn2 conferred by YKD Gcd- substitutions. These findings indicate that the YKD interacts directly with the KD for activation of kinase function and identify likely sites of direct YKD-KD contact. We propose that tRNA binding to the HisRS domain evokes a conformational change that increases access of the YKD to sites of allosteric activation in the adjoining KD.
应激激活蛋白激酶Gcn2通过翻译起始因子eIF2α的磷酸化来调节蛋白质合成,从酵母到哺乳动物均如此。Gcn2激酶结构域(KD)本身无活性,需要相邻调节结构域的变构刺激。Gcn2含有一个假激酶结构域(YKD),在氨基酸饥饿的酵母细胞中,该结构域是高水平eIF2α磷酸化所必需的;然而,YKD在KD激活中的作用尚不清楚。我们分离出了进化保守的YKD氨基酸替代物,这些替代物损害Gcn2激活,但不降低激活配体——无电荷tRNA与Gcn2组氨酰-tRNA合成酶相关结构域的结合。几个这样的Gcn替代物聚集在YKD预测的螺旋E和I(αE和αI)中。我们还鉴定出了Gcd替代物,它们引发Gcn2的组成型激活,定位在YKD的αI中。有趣的是,αI的Gcd替代物在体外增强YKD-KD相互作用,而αE和αI中的Gcn替代物既抑制这种效应,也抑制YKD的Gcd替代物赋予的Gcn2组成型激活。这些发现表明,YKD直接与KD相互作用以激活激酶功能,并确定了YKD-KD直接接触的可能位点。我们提出,tRNA与HisRS结构域的结合引发构象变化,增加YKD与相邻KD中变构激活位点的接触。