Suppr超能文献

在动态环境中使用无人水面航行器实时检测有害甲藻多环旋沟藻

Real time detecting of harmful dinoflagellate Cochlodinium polykrikoides using unmanned surface vehicle in dynamic environments.

作者信息

Seo Sung Mok, Chung Wan Kyun, Cho Eun Seob

出版信息

J Environ Biol. 2014 May;35(3):563-70.

Abstract

Since the first occurrence in 1982, red tides have been observed annually in Korean coastal waters in the form of harmful dinoflagellate Cochlodinium polykrikoides blooms. The distinction in the proposed method for red tide monitoring is the focus on the narrow stripe red tide at an early stage to allow for advanced actions. The distance graph between Head of Narrow Red tide (HNR) and location of the robot have suggested in reference to unknown searching area. With mapping and path planning, then, it can quickly keep tracking out even if the magnitude and direction of current flow was changed. The one-hundred times simulations of different situations were attempted to comparison by box plot both algorithms of speed by reaching the right side of simulation window. Consequently, the red tide tracking algorithm is based on the red tide probability map and the tracking & recovering path planner. Inputs to the algorithm include the measured flow velocities and the detection or non-detection state at each robot location. Furthermore, a USV (Unmanned Surface Vehicle) model is added to evaluate the effectiveness of the algorithm. This approach for red tide monitoring may lead to a breakthrough in the field of environmental surveillance.

摘要

自1982年首次出现以来,韩国沿海水域每年都会观测到赤潮,其形式为有害甲藻多环旋沟藻大量繁殖。所提出的赤潮监测方法的独特之处在于,在早期阶段关注狭窄带状赤潮,以便采取提前行动。在未知搜索区域的参考下,提出了窄带赤潮头部(HNR)与机器人位置之间的距离图。通过绘图和路径规划,即使当前水流的大小和方向发生变化,它也能迅速追踪到。通过箱线图对到达模拟窗口右侧的两种速度算法进行了不同情况的一百次模拟比较。因此,赤潮跟踪算法基于赤潮概率图以及跟踪与恢复路径规划器。该算法的输入包括测量的流速以及每个机器人位置的检测或未检测状态。此外,还添加了一个无人水面航行器(USV)模型来评估该算法的有效性。这种赤潮监测方法可能会在环境监测领域带来突破。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验