Fishery Engineering Department, Santa Catarina State University, Laguna 88790-000, Brazil.
Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil.
Aquat Toxicol. 2014 Jul;152:324-34. doi: 10.1016/j.aquatox.2014.04.021. Epub 2014 Apr 26.
Phenanthrene (PHE), a major component of crude oil, is one of the most abundant polycyclic aromatic hydrocarbons (PAHs) in aquatic ecosystems, and is readily bioavailable to marine organisms. Understanding the toxicity of PAHs in animals requires knowledge of the systems for xenobiotic biotransformation and antioxidant defence and these are poorly understood in bivalves. We report, for the first time, new transcripts and tissue-specific transcription in gill and digestive gland from the oyster Crassostrea brasiliana following 24h exposure to 100 and 1000μgL(-1) PHE, a model PAH. Six new cytochrome P450 (CYP) and four new glutathione S-transferase (GST) genes were analysed by means of quantitative reverse transcription PCR (qRT-PCR). Different antioxidant endpoints, including both enzymatic and non-enzymatic parameters, were assessed as potential biomarkers of oxidative stress. GST activity was measured as an indicator of phase II biotransformation. Rapid clearance of PHE was associated with upregulation of both phase I and II genes, with more pronounced effects in the gill at 1000μgL(-1) PHE. After 24h of exposure, PHE also caused impairment of the antioxidant system, decreasing non-protein thiols and glutathione levels. On the other hand, no change in antioxidant enzymes was observed. PHE treatment (100μgL(-1)) significantly decreased GST activity in the gill of exposed oysters. Both CYP and GST were transcribed in a tissue-specific manner, reflecting the importance of the gill in the detoxification of PAHs. Likewise, the antioxidant parameters followed a similar pattern. The data provide strong evidence that these genes play key roles in C. brasiliana biotransformation of PHE and highlight the importance of gill in xenobiotic metabolism.
菲(PHE)是原油的主要成分之一,也是水生生态系统中最丰富的多环芳烃(PAHs)之一,很容易被海洋生物吸收。了解 PAHs 在动物中的毒性需要了解外来生物转化和抗氧化防御系统,而这些在双壳类动物中了解甚少。我们首次报道了在贻贝 Crassostrea brasiliana 鳃和消化腺中,在 24 小时暴露于 100 和 1000μgL(-1)菲(一种模型 PAH)后,新的转录本和组织特异性转录。通过定量逆转录 PCR(qRT-PCR)分析了六个新的细胞色素 P450(CYP)和四个新的谷胱甘肽 S-转移酶(GST)基因。评估了不同的抗氧化终点,包括酶和非酶参数,作为氧化应激的潜在生物标志物。GST 活性作为 II 相生物转化的指标进行测量。菲的快速清除与 I 相和 II 相基因的上调有关,在 1000μgL(-1)菲时,鳃中的作用更为明显。暴露 24 小时后,菲还导致抗氧化系统受损,降低了非蛋白巯基和谷胱甘肽水平。另一方面,抗氧化酶没有变化。PHE 处理(100μgL(-1))显著降低了暴露贻贝鳃中的 GST 活性。CYP 和 GST 均以组织特异性方式转录,反映了鳃在 PAHs 解毒中的重要性。同样,抗氧化参数也呈现出相似的模式。这些数据有力地证明了这些基因在 C. brasiliana 对 PHE 的生物转化中发挥着关键作用,并强调了鳃在异生物质代谢中的重要性。