Liggins institute, University of Auckland, Grafton, Auckland 1032, New Zealand; Institute of Natural and Mathematical Sciences, Massey University, Albany, Auckland 0745, New Zealand.
Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
Mitochondrion. 2014 Jul;17:141-9. doi: 10.1016/j.mito.2014.04.014. Epub 2014 May 9.
Over the course of mitochondrial evolution, the majority of genes required for its function have been transferred and integrated into nuclear chromosomes. Ongoing transfer of mitochondrial DNA to the nucleus has been detected, but its functional significance has not been fully elucidated. Here by Genome Conformation Capture, we identify DNA-DNA interactions between the mitochondrial and nuclear chromosomes (mt-nDNA interactions) that vary in strength and number between the G1, G2 and M phases of the fission yeast cell cycle. Mt-nDNA interactions captured in mitotic anaphase were associated with nuclear genes required for the regulation of cell growth and energy availability. Furthermore, mt-nDNA interactions captured in the G1 phase involved high efficiency, early firing origins of DNA replication. Collectively, these results suggest functional roles for the ongoing transfer of regions of the mitochondrial genome to the nucleus.
在线粒体进化过程中,大多数其功能所需的基因已被转移并整合到核染色体中。虽然已经检测到线粒体 DNA 向细胞核的持续转移,但它的功能意义尚未完全阐明。在这里,通过基因组构象捕获,我们鉴定了线粒体和核染色体之间的 DNA-DNA 相互作用(mt-nDNA 相互作用),这些相互作用在裂殖酵母细胞周期的 G1、G2 和 M 期之间在强度和数量上有所不同。有丝分裂后期捕获的 mt-nDNA 相互作用与核基因有关,这些核基因对于细胞生长和能量供应的调节是必需的。此外,在 G1 期捕获的 mt-nDNA 相互作用涉及到高效、早期启动的 DNA 复制起始点。总的来说,这些结果表明线粒体基因组的区域向细胞核的持续转移具有功能作用。