Serer María I, Bonomi Hernán R, Guimarães Beatriz G, Rossi Rolando C, Goldbaum Fernando A, Klinke Sebastián
Fundación Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette CEDEX, France.
Acta Crystallogr D Biol Crystallogr. 2014 May;70(Pt 5):1419-34. doi: 10.1107/S1399004714005161. Epub 2014 Apr 30.
Riboflavin synthase (RS) catalyzes the last step of riboflavin biosynthesis in microorganisms and plants, which corresponds to the dismutation of two molecules of 6,7-dimethyl-8-ribityllumazine to yield one molecule of riboflavin and one molecule of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. Owing to the absence of this enzyme in animals and the fact that most pathogenic bacteria show a strict dependence on riboflavin biosynthesis, RS has been proposed as a potential target for antimicrobial drug development. Eubacterial, fungal and plant RSs assemble as homotrimers lacking C3 symmetry. Each monomer can bind two substrate molecules, yet there is only one active site for the whole enzyme, which is located at the interface between two neighbouring chains. This work reports the crystallographic structure of RS from the pathogenic bacterium Brucella abortus (the aetiological agent of the disease brucellosis) in its apo form, in complex with riboflavin and in complex with two different product analogues, being the first time that the structure of an intact RS trimer with bound ligands has been solved. These crystal models support the hypothesis of enhanced flexibility in the particle and also highlight the role of the ligands in assembling the unique active site. Kinetic and binding studies were also performed to complement these findings. The structural and biochemical information generated may be useful for the rational design of novel RS inhibitors with antimicrobial activity.
核黄素合酶(RS)催化微生物和植物中核黄素生物合成的最后一步反应,该反应是两分子6,7 - 二甲基 - 8 - 核糖基 Lumazine发生歧化反应,生成一分子核黄素和一分子5 - 氨基 - 6 - 核糖基氨基 - 2,4(1H,3H) - 嘧啶二酮。由于动物体内不存在这种酶,且大多数致病细菌对核黄素生物合成有严格依赖性,因此RS被认为是抗菌药物开发的潜在靶点。真细菌、真菌和植物的RS组装成缺乏C3对称性的同三聚体。每个单体可结合两个底物分子,但整个酶只有一个活性位点,位于两个相邻链之间的界面处。本研究报道了致病性细菌流产布鲁氏菌(布鲁氏菌病的病原体)的核黄素合酶在无配体形式、与核黄素结合以及与两种不同产物类似物结合时的晶体结构,这是首次解析出完整的带有结合配体的RS三聚体结构。这些晶体模型支持了颗粒中增强灵活性的假说,也突出了配体在组装独特活性位点中的作用。还进行了动力学和结合研究以补充这些发现。所获得的结构和生化信息可能有助于合理设计具有抗菌活性的新型RS抑制剂。