Hoffpauir Zoe A, Lamb Audrey L
Department of Chemistry, 1 UTSA Circle, University of Texas at San Antonio, San Antonio, Texas, USA.
Department of Chemistry, 1 UTSA Circle, University of Texas at San Antonio, San Antonio, Texas, USA.
J Biol Chem. 2025 Mar 25;301(5):108443. doi: 10.1016/j.jbc.2025.108443.
The riboflavin biosynthetic pathway uses dedicated enzymes that function exclusively for riboflavin production. Indeed, the pathway is fully annotated, with the exception of an unknown phosphatase that catalyzes the dephosphorylation of 5-amino-6-ribitylamino-pyrimidinedione 5'-phosphate (ARAPDP) to generate 5-amino-6-ribitylamino-pyrimidinedione (ARAPD), which is the substrate for the penultimate enzyme of the pathway, lumazine synthase. Whereas nonspecific phosphatases from the haloacid dehalogenase superfamily capable of catalyzing the dephosphorylation of ARAPDP have been reported for Bacillus subtilis, Escherichia coli, and Arabadopsis thaliana, we hypothesized that a specific phosphatase may carry out this reaction. Using an anaerobic activity-based screen, two phosphatases from Aquifex aeolicus were identified that dephosphorylate ARAPDP, but only one reconstitutes riboflavin production in a one-pot experiment with the other four enzymes of riboflavin biosynthesis. The first enzyme, annotated as an IMP, is nonspecific, and indiscriminately dephosphorylates ARAPDP along with ribulose 5-phosphate and NADPH, two required substrates of riboflavin biosynthesis. The second enzyme, a histidine family phosphatase, only dephosphorylates ARAPDP in the one-pot experiment thus facilitating riboflavin formation. The structures of both enzymes were determined by X-ray crystallography to reveal the vastly different folds capable of performing the ARAPDP dephosphorylation chemistry. This work has impact both for the production of riboflavin by microbial fermentation and for antimicrobial drug design.
核黄素生物合成途径使用专门的酶,这些酶仅用于核黄素的生产。实际上,该途径已得到充分注释,但有一种未知的磷酸酶除外,该磷酸酶催化5-氨基-6-核糖基氨基嘧啶二酮5'-磷酸(ARAPDP)去磷酸化,生成5-氨基-6-核糖基氨基嘧啶二酮(ARAPD),而ARAPD是该途径倒数第二个酶——鲁棒嗪合酶的底物。虽然已报道枯草芽孢杆菌、大肠杆菌和拟南芥中来自卤代酸脱卤酶超家族的非特异性磷酸酶能够催化ARAPDP的去磷酸化,但我们推测可能有一种特异性磷酸酶来进行此反应。通过基于厌氧活性的筛选,我们鉴定出嗜热栖热菌中的两种磷酸酶可使ARAPDP去磷酸化,但在与核黄素生物合成的其他四种酶进行的一锅法实验中,只有一种能重建核黄素的生产。第一种酶注释为IMP,是非特异性的,会不加区分地使ARAPDP以及核酮糖5-磷酸和NADPH(核黄素生物合成所需的两种底物)去磷酸化。第二种酶是一种组氨酸家族磷酸酶,在一锅法实验中仅使ARAPDP去磷酸化,从而促进核黄素的形成。通过X射线晶体学确定了这两种酶的结构,以揭示能够进行ARAPDP去磷酸化化学反应的截然不同的折叠结构。这项工作对通过微生物发酵生产核黄素以及抗菌药物设计都有影响。