Nkuipou-Kenfack Esther, Duranton Flore, Gayrard Nathalie, Argilés Àngel, Lundin Ulrika, Weinberger Klaus M, Dakna Mohammed, Delles Christian, Mullen William, Husi Holger, Klein Julie, Koeck Thomas, Zürbig Petra, Mischak Harald
Mosaiques Diagnostics GmbH, Hannover, Germany; Department of Toxicology, Hannover Medical School, Hannover, Germany.
RD Néphrologie, Montpellier, France.
PLoS One. 2014 May 9;9(5):e96955. doi: 10.1371/journal.pone.0096955. eCollection 2014.
Chronic kidney disease (CKD) is part of a number of systemic and renal diseases and may reach epidemic proportions over the next decade. Efforts have been made to improve diagnosis and management of CKD. We hypothesised that combining metabolomic and proteomic approaches could generate a more systemic and complete view of the disease mechanisms. To test this approach, we examined samples from a cohort of 49 patients representing different stages of CKD. Urine samples were analysed for proteomic changes using capillary electrophoresis-mass spectrometry and urine and plasma samples for metabolomic changes using different mass spectrometry-based techniques. The training set included 20 CKD patients selected according to their estimated glomerular filtration rate (eGFR) at mild (59.9±16.5 mL/min/1.73 m2; n = 10) or advanced (8.9±4.5 mL/min/1.73 m2; n = 10) CKD and the remaining 29 patients left for the test set. We identified a panel of 76 statistically significant metabolites and peptides that correlated with CKD in the training set. We combined these biomarkers in different classifiers and then performed correlation analyses with eGFR at baseline and follow-up after 2.8±0.8 years in the test set. A solely plasma metabolite biomarker-based classifier significantly correlated with the loss of kidney function in the test set at baseline and follow-up (ρ = -0.8031; p<0.0001 and ρ = -0.6009; p = 0.0019, respectively). Similarly, a urinary metabolite biomarker-based classifier did reveal significant association to kidney function (ρ = -0.6557; p = 0.0001 and ρ = -0.6574; p = 0.0005). A classifier utilising 46 identified urinary peptide biomarkers performed statistically equivalent to the urinary and plasma metabolite classifier (ρ = -0.7752; p<0.0001 and ρ = -0.8400; p<0.0001). The combination of both urinary proteomic and urinary and plasma metabolic biomarkers did not improve the correlation with eGFR. In conclusion, we found excellent association of plasma and urinary metabolites and urinary peptides with kidney function, and disease progression, but no added value in combining the different biomarkers data.
慢性肾脏病(CKD)是多种全身性和肾脏疾病的一部分,在未来十年可能会达到流行程度。人们已努力改善CKD的诊断和管理。我们假设,将代谢组学和蛋白质组学方法结合起来,可以更全面、完整地了解疾病机制。为了验证这种方法,我们检查了来自49名代表不同CKD阶段患者队列的样本。使用毛细管电泳-质谱分析法分析尿液样本的蛋白质组变化,使用不同的基于质谱的技术分析尿液和血浆样本的代谢组变化。训练集包括根据估算肾小球滤过率(eGFR)在轻度(59.9±16.5 mL/min/1.73 m²;n = 10)或重度(8.9±4.5 mL/min/1.73 m²;n = 10)CKD阶段挑选出的20名CKD患者,其余29名患者留作测试集。我们在训练集中确定了一组76种与CKD相关的具有统计学意义的代谢物和肽。我们将这些生物标志物组合到不同的分类器中,然后在测试集中对基线和2.8±0.8年后随访时的eGFR进行相关性分析。仅基于血浆代谢物生物标志物的分类器在测试集的基线和随访时与肾功能丧失显著相关(分别为ρ = -0.8031;p<0.0001和ρ = -0.6009;p = 0.0019)。同样,基于尿液代谢物生物标志物的分类器确实显示出与肾功能有显著关联(ρ = -0.6557;p = 0.0001和ρ = -0.6574;p = 0.0005)。利用46种已鉴定的尿液肽生物标志物的分类器在统计学上与尿液和血浆代谢物分类器相当(ρ = -0.7752;p<0.0001和ρ = -0.8400;p<0.0001)。尿液蛋白质组学以及尿液和血浆代谢生物标志物的组合并未改善与eGFR的相关性。总之,我们发现血浆和尿液代谢物以及尿液肽与肾功能和疾病进展有很好的关联,但组合不同生物标志物数据并无额外价值。