Suppr超能文献

利用低秩多项式逼近从简化的高分辨率扩散成像数据中进行白质结构评估。

White matter structure assessment from reduced HARDI data using low-rank polynomial approximations.

作者信息

Gur Yaniv, Jiao Fangxiang, Zhu Stella Xinghua, Johnson Chris R

机构信息

SCI Institute, University of Utah, 72 S. Central Campus Dr., SLC, UT 84112, USA.

Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong.

出版信息

Med Image Comput Comput Assist Interv. 2012 Oct;15:186-197.

Abstract

Assessing white matter fiber orientations directly from DWI measurements in single-shell HARDI has many advantages. One of these advantages is the ability to model multiple fibers using fewer parameters than are required to describe an ODF and, thus, reduce the number of DW samples needed for the reconstruction. However, fitting a model directly to the data using Gaussian mixture, for instance, is known as an initialization-dependent unstable process. This paper presents a novel direct fitting technique for single-shell HARDI that enjoys the advantages of direct fitting without sacrificing the accuracy and stability even when the number of gradient directions is relatively low. This technique is based on a spherical deconvolution technique and decomposition of a homogeneous polynomial into a sum of powers of linear forms, known as a . The fiber-ODF (fODF), which is described by a homogeneous polynomial, is approximated here by a discrete sum of even-order linear-forms that are directly related to rank-1 tensors and represent single-fibers. This polynomial approximation is convolved to a single-fiber response function, and the result is optimized against the DWI measurements to assess the fiber orientations and the volume fractions directly. This formulation is accompanied by a robust iterative alternating numerical scheme which is based on the Levenberg-Marquardt technique. Using simulated data and in vivo, human brain data we show that the proposed algorithm is stable, accurate and can model complex fiber structures using only 12 gradient directions.

摘要

直接从单壳高分辨率扩散加权成像(HARDI)的扩散加权成像(DWI)测量中评估白质纤维方向具有许多优点。其中一个优点是能够使用比描述一个ODF所需参数更少的参数来对多根纤维进行建模,从而减少重建所需的DW样本数量。然而,例如使用高斯混合模型直接对数据进行拟合是一个依赖初始化的不稳定过程。本文提出了一种用于单壳HARDI的新型直接拟合技术,即使在梯度方向数量相对较少时,该技术也能在不牺牲准确性和稳定性的情况下享有直接拟合的优点。该技术基于球面反卷积技术以及将齐次多项式分解为线性形式的幂之和,即所谓的。由齐次多项式描述的纤维方向分布函数(fODF)在此处由与一阶张量直接相关且表示单根纤维的偶阶线性形式的离散和来近似。这个多项式近似与单根纤维响应函数进行卷积,然后针对DWI测量结果进行优化,以直接评估纤维方向和体积分数。这种公式化伴随着一种基于列文伯格 - 马夸尔特技术的稳健迭代交替数值方案。使用模拟数据和体内人脑数据,我们表明所提出的算法是稳定、准确的,并且仅使用12个梯度方向就能对复杂的纤维结构进行建模。

相似文献

2
Detection of crossing white matter fibers with high-order tensors and rank-k decompositions.
Inf Process Med Imaging. 2011;22:538-49. doi: 10.1007/978-3-642-22092-0_44.
4
Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network.
Med Phys. 2019 Jul;46(7):3101-3116. doi: 10.1002/mp.13555. Epub 2019 May 11.
6
A polynomial approach for maxima extraction and its application to tractography in HARDI.
Inf Process Med Imaging. 2011;22:723-34. doi: 10.1007/978-3-642-22092-0_59.
7
Beyond fractional anisotropy: extraction of bundle-specific structural metrics from crossing fiber models.
Neuroimage. 2014 Oct 15;100:176-91. doi: 10.1016/j.neuroimage.2014.06.015. Epub 2014 Jun 14.
8
Estimation of the CSA-ODF using Bayesian compressed sensing of multi-shell HARDI.
Magn Reson Med. 2014 Nov;72(5):1471-85. doi: 10.1002/mrm.25046. Epub 2013 Dec 12.
9
Histological validation of diffusion MRI fiber orientation distributions and dispersion.
Neuroimage. 2018 Jan 15;165:200-221. doi: 10.1016/j.neuroimage.2017.10.046. Epub 2017 Oct 23.
10
Enhancement of fiber orientation distribution reconstruction in diffusion-weighted imaging by single channel blind source separation.
IEEE Trans Biomed Eng. 2012 Feb;59(2):363-73. doi: 10.1109/TBME.2011.2172793. Epub 2011 Oct 19.

引用本文的文献

本文引用的文献

1
A polynomial approach for maxima extraction and its application to tractography in HARDI.
Inf Process Med Imaging. 2011;22:723-34. doi: 10.1007/978-3-642-22092-0_59.
2
Detection of crossing white matter fibers with high-order tensors and rank-k decompositions.
Inf Process Med Imaging. 2011;22:538-49. doi: 10.1007/978-3-642-22092-0_44.
3
ODF maxima extraction in spherical harmonic representation via analytical search space reduction.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):84-91. doi: 10.1007/978-3-642-15745-5_11.
4
Multi-diffusion-tensor fitting via spherical deconvolution: a unifying framework.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):674-81. doi: 10.1007/978-3-642-15705-9_82.
5
Symmetric positive-definite Cartesian tensor orientation distribution functions (CT-ODF).
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):582-9. doi: 10.1007/978-3-642-15705-9_71.
6
Tensor kernels for simultaneous fiber model estimation and tractography.
Magn Reson Med. 2010 Jul;64(1):138-48. doi: 10.1002/mrm.22292.
7
How does angular resolution affect diffusion imaging measures?
Neuroimage. 2010 Jan 15;49(2):1357-71. doi: 10.1016/j.neuroimage.2009.09.057. Epub 2009 Oct 9.
8
Estimating crossing fibers: a tensor decomposition approach.
IEEE Trans Vis Comput Graph. 2008 Nov-Dec;14(6):1635-42. doi: 10.1109/TVCG.2008.128.
9
On computing the underlying fiber directions from the diffusion orientation distribution function.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):1-8. doi: 10.1007/978-3-540-85988-8_1.
10
Regularized, fast, and robust analytical Q-ball imaging.
Magn Reson Med. 2007 Sep;58(3):497-510. doi: 10.1002/mrm.21277.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验