Duarte-Carvajalino Julio M, Lenglet Christophe, Xu Junqian, Yacoub Essa, Ugurbil Kamil, Moeller Steen, Carin Lawrence, Sapiro Guillermo
Radiology - CMRR, University of Minnesota, Minneapolis, Minnesota, USA.
Magn Reson Med. 2014 Nov;72(5):1471-85. doi: 10.1002/mrm.25046. Epub 2013 Dec 12.
Diffusion MRI provides important information about the brain white matter structures and has opened new avenues for neuroscience and translational research. However, acquisition time needed for advanced applications can still be a challenge in clinical settings. There is consequently a need to accelerate diffusion MRI acquisitions.
A multi-task Bayesian compressive sensing (MT-BCS) framework is proposed to directly estimate the constant solid angle orientation distribution function (CSA-ODF) from under-sampled (i.e., accelerated image acquisition) multi-shell high angular resolution diffusion imaging (HARDI) datasets, and accurately recover HARDI data at higher resolution in q-space. The proposed MT-BCS approach exploits the spatial redundancy of the data by modeling the statistical relationships within groups (clusters) of diffusion signal. This framework also provides uncertainty estimates of the computed CSA-ODF and diffusion signal, directly computed from the compressive measurements. Experiments validating the proposed framework are performed using realistic multi-shell synthetic images and in vivo multi-shell high angular resolution HARDI datasets.
Results indicate a practical reduction in the number of required diffusion volumes (q-space samples) by at least a factor of four to estimate the CSA-ODF from multi-shell data.
This work presents, for the first time, a multi-task Bayesian compressive sensing approach to simultaneously estimate the full posterior of the CSA-ODF and diffusion-weighted volumes from multi-shell HARDI acquisitions. It demonstrates improvement of the quality of acquired datasets by means of CS de-noising, and accurate estimation of the CSA-ODF, as well as enables a reduction in the acquisition time by a factor of two to four, especially when "staggered" q-space sampling schemes are used. The proposed MT-BCS framework can naturally be combined with parallel MR imaging to further accelerate HARDI acquisitions.
扩散磁共振成像(Diffusion MRI)可提供有关脑白质结构的重要信息,并为神经科学和转化研究开辟了新途径。然而,在临床环境中,高级应用所需的采集时间仍然是一个挑战。因此,需要加速扩散磁共振成像的采集。
提出了一种多任务贝叶斯压缩感知(MT-BCS)框架,用于直接从欠采样(即加速图像采集)的多壳高角分辨率扩散成像(HARDI)数据集中估计恒定立体角取向分布函数(CSA-ODF),并在q空间中以更高分辨率准确恢复HARDI数据。所提出的MT-BCS方法通过对扩散信号组(簇)内的统计关系进行建模,利用了数据的空间冗余性。该框架还提供了根据压缩测量直接计算出的计算CSA-ODF和扩散信号的不确定性估计。使用逼真的多壳合成图像和体内多壳高角分辨率HARDI数据集进行了验证所提出框架的实验。
结果表明,从多壳数据估计CSA-ODF所需的扩散体积(q空间样本)数量实际减少了至少四倍。
这项工作首次提出了一种多任务贝叶斯压缩感知方法,可同时从多壳HARDI采集中估计CSA-ODF和扩散加权体积的完整后验。它通过CS去噪展示了采集数据集质量的提高,以及对CSA-ODF的准确估计,并且能够将采集时间减少二至四倍,特别是在使用“交错”q空间采样方案时。所提出的MT-BCS框架可以自然地与并行磁共振成像相结合,以进一步加速HARDI采集。