Suppr超能文献

利用多壳高分辨率扩散成像的贝叶斯压缩感知估计CSA-ODF

Estimation of the CSA-ODF using Bayesian compressed sensing of multi-shell HARDI.

作者信息

Duarte-Carvajalino Julio M, Lenglet Christophe, Xu Junqian, Yacoub Essa, Ugurbil Kamil, Moeller Steen, Carin Lawrence, Sapiro Guillermo

机构信息

Radiology - CMRR, University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

Magn Reson Med. 2014 Nov;72(5):1471-85. doi: 10.1002/mrm.25046. Epub 2013 Dec 12.

Abstract

PURPOSE

Diffusion MRI provides important information about the brain white matter structures and has opened new avenues for neuroscience and translational research. However, acquisition time needed for advanced applications can still be a challenge in clinical settings. There is consequently a need to accelerate diffusion MRI acquisitions.

METHODS

A multi-task Bayesian compressive sensing (MT-BCS) framework is proposed to directly estimate the constant solid angle orientation distribution function (CSA-ODF) from under-sampled (i.e., accelerated image acquisition) multi-shell high angular resolution diffusion imaging (HARDI) datasets, and accurately recover HARDI data at higher resolution in q-space. The proposed MT-BCS approach exploits the spatial redundancy of the data by modeling the statistical relationships within groups (clusters) of diffusion signal. This framework also provides uncertainty estimates of the computed CSA-ODF and diffusion signal, directly computed from the compressive measurements. Experiments validating the proposed framework are performed using realistic multi-shell synthetic images and in vivo multi-shell high angular resolution HARDI datasets.

RESULTS

Results indicate a practical reduction in the number of required diffusion volumes (q-space samples) by at least a factor of four to estimate the CSA-ODF from multi-shell data.

CONCLUSION

This work presents, for the first time, a multi-task Bayesian compressive sensing approach to simultaneously estimate the full posterior of the CSA-ODF and diffusion-weighted volumes from multi-shell HARDI acquisitions. It demonstrates improvement of the quality of acquired datasets by means of CS de-noising, and accurate estimation of the CSA-ODF, as well as enables a reduction in the acquisition time by a factor of two to four, especially when "staggered" q-space sampling schemes are used. The proposed MT-BCS framework can naturally be combined with parallel MR imaging to further accelerate HARDI acquisitions.

摘要

目的

扩散磁共振成像(Diffusion MRI)可提供有关脑白质结构的重要信息,并为神经科学和转化研究开辟了新途径。然而,在临床环境中,高级应用所需的采集时间仍然是一个挑战。因此,需要加速扩散磁共振成像的采集。

方法

提出了一种多任务贝叶斯压缩感知(MT-BCS)框架,用于直接从欠采样(即加速图像采集)的多壳高角分辨率扩散成像(HARDI)数据集中估计恒定立体角取向分布函数(CSA-ODF),并在q空间中以更高分辨率准确恢复HARDI数据。所提出的MT-BCS方法通过对扩散信号组(簇)内的统计关系进行建模,利用了数据的空间冗余性。该框架还提供了根据压缩测量直接计算出的计算CSA-ODF和扩散信号的不确定性估计。使用逼真的多壳合成图像和体内多壳高角分辨率HARDI数据集进行了验证所提出框架的实验。

结果

结果表明,从多壳数据估计CSA-ODF所需的扩散体积(q空间样本)数量实际减少了至少四倍。

结论

这项工作首次提出了一种多任务贝叶斯压缩感知方法,可同时从多壳HARDI采集中估计CSA-ODF和扩散加权体积的完整后验。它通过CS去噪展示了采集数据集质量的提高,以及对CSA-ODF的准确估计,并且能够将采集时间减少二至四倍,特别是在使用“交错”q空间采样方案时。所提出的MT-BCS框架可以自然地与并行磁共振成像相结合,以进一步加速HARDI采集。

相似文献

1
Estimation of the CSA-ODF using Bayesian compressed sensing of multi-shell HARDI.
Magn Reson Med. 2014 Nov;72(5):1471-85. doi: 10.1002/mrm.25046. Epub 2013 Dec 12.
2
Joint 6D k-q Space Compressed Sensing for Accelerated High Angular Resolution Diffusion MRI.
Inf Process Med Imaging. 2015;24:782-93. doi: 10.1007/978-3-319-19992-4_62.
3
Nonnegative definite EAP and ODF estimation via a unified multi-shell HARDI reconstruction.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):313-21. doi: 10.1007/978-3-642-33418-4_39.
4
A Sparse Bayesian Learning Algorithm for White Matter Parameter Estimation from Compressed Multi-shell Diffusion MRI.
Med Image Comput Comput Assist Interv. 2017 Sep;10433:602-610. doi: 10.1007/978-3-319-66182-7_69. Epub 2017 Sep 4.
5
Generalized diffusion spectrum magnetic resonance imaging (GDSI) for model-free reconstruction of the ensemble average propagator.
Neuroimage. 2019 Apr 1;189:497-515. doi: 10.1016/j.neuroimage.2019.01.038. Epub 2019 Jan 23.
6
Multiple Q-shell ODF reconstruction in Q-ball imaging.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):423-31. doi: 10.1007/978-3-642-04271-3_52.
7
Leveraging EAP-Sparsity for Compressed Sensing of MS-HARDI in (k, q)-Space.
Inf Process Med Imaging. 2015;24:375-86. doi: 10.1007/978-3-319-19992-4_29.
8
Denoising high angular resolution diffusion imaging data by combining singular value decomposition and non-local means filter.
J Neurosci Methods. 2019 Jan 15;312:105-113. doi: 10.1016/j.jneumeth.2018.11.020. Epub 2018 Nov 22.
9
General orientation transform for the estimation of fiber orientations in white matter tissues.
Magn Reson Med. 2022 Aug;88(2):945-961. doi: 10.1002/mrm.29256. Epub 2022 Apr 5.

引用本文的文献

1
Editorial: Novel applications of Bayesian and other models in translational neuroscience.
Front Neurosci. 2024 Apr 29;18:1373633. doi: 10.3389/fnins.2024.1373633. eCollection 2024.
2
Development of Brain Structural Networks Over Age 8: A Preliminary Study Based on Diffusion Weighted Imaging.
Front Aging Neurosci. 2020 Mar 10;12:61. doi: 10.3389/fnagi.2020.00061. eCollection 2020.
3
Diffusion Acceleration with Gaussian process Estimated Reconstruction (DAGER).
Magn Reson Med. 2019 Jul;82(1):107-125. doi: 10.1002/mrm.27699. Epub 2019 Mar 1.
4
A Sparse Bayesian Learning Algorithm for White Matter Parameter Estimation from Compressed Multi-shell Diffusion MRI.
Med Image Comput Comput Assist Interv. 2017 Sep;10433:602-610. doi: 10.1007/978-3-319-66182-7_69. Epub 2017 Sep 4.
5
Estimation of white matter fiber parameters from compressed multiresolution diffusion MRI using sparse Bayesian learning.
Neuroimage. 2018 Feb 15;167:488-503. doi: 10.1016/j.neuroimage.2017.06.052. Epub 2017 Jun 29.
6
Image formation in diffusion MRI: A review of recent technical developments.
J Magn Reson Imaging. 2017 Sep;46(3):646-662. doi: 10.1002/jmri.25664. Epub 2017 Feb 14.
7
Rapid brain MRI acquisition techniques at ultra-high fields.
NMR Biomed. 2016 Sep;29(9):1198-221. doi: 10.1002/nbm.3478. Epub 2016 Feb 2.
8
Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.
PLoS One. 2015 Dec 18;10(12):e0145205. doi: 10.1371/journal.pone.0145205. eCollection 2015.
9
Subject-specific computational modeling of DBS in the PPTg area.
Front Comput Neurosci. 2015 Jul 14;9:93. doi: 10.3389/fncom.2015.00093. eCollection 2015.
10
Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project.
Neuroimage. 2013 Oct 15;80:80-104. doi: 10.1016/j.neuroimage.2013.05.012. Epub 2013 May 21.

本文引用的文献

1
Parametric dictionary learning for modeling EAP and ODF in diffusion MRI.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):10-7. doi: 10.1007/978-3-642-33454-2_2.
2
Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):1-9. doi: 10.1007/978-3-642-33454-2_1.
3
Nonnegative definite EAP and ODF estimation via a unified multi-shell HARDI reconstruction.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):313-21. doi: 10.1007/978-3-642-33418-4_39.
4
Sparse DSI: learning DSI structure for denoising and fast imaging.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):288-96. doi: 10.1007/978-3-642-33418-4_36.
5
Tractometer: online evaluation system for tractography.
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):699-706. doi: 10.1007/978-3-642-33415-3_86.
6
AN OVER-COMPLETE DICTIONARY BASED REGULARIZED RECONSTRUCTION OF A FIELD OF ENSEMBLE AVERAGE PROPAGATORS.
Proc IEEE Int Symp Biomed Imaging. 2012 Jul 12;9:940-943. doi: 10.1109/ISBI.2012.6235711. Epub 2012 May 2.
7
Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries.
Magn Reson Med. 2012 Dec;68(6):1747-54. doi: 10.1002/mrm.24505. Epub 2012 Sep 24.
8
HOW DO SPATIAL AND ANGULAR RESOLUTION AFFECT BRAIN CONNECTIVITY MAPS FROM DIFFUSION MRI?
Proc IEEE Int Symp Biomed Imaging. 2012:1-6. doi: 10.1109/ISBI.2012.6235469.
9
Sparsity transform k-t principal component analysis for accelerating cine three-dimensional flow measurements.
Magn Reson Med. 2013 Jul;70(1):53-63. doi: 10.1002/mrm.24431. Epub 2012 Aug 6.
10
Improving diffusion MRI using simultaneous multi-slice echo planar imaging.
Neuroimage. 2012 Oct 15;63(1):569-80. doi: 10.1016/j.neuroimage.2012.06.033. Epub 2012 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验