Suppr超能文献

地塞米松诱导的胰岛素抵抗:使用新型正电子发射断层扫描放射性药物6-脱氧-6-[(18)F]氟-D-葡萄糖的动力学建模

Dexamethasone-induced insulin resistance: kinetic modeling using novel PET radiopharmaceutical 6-deoxy-6-[(18)F]fluoro-D-glucose.

作者信息

Su Kuan-Hao, Chandramouli Visvanathan, Ismail-Beigi Faramarz, Muzic Raymond F

机构信息

Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA.

出版信息

Mol Imaging Biol. 2014 Oct;16(5):710-20. doi: 10.1007/s11307-014-0737-0.

Abstract

PURPOSE

An insulin-resistant rat model, induced by dexamethasone, was used to evaluate a Michaelis-Menten-based kinetic model using 6-deoxy-6-[(18)F]fluoro-D-glucose (6-[(18)F]FDG) to quantify glucose transport with PET.

PROCEDURES

Seventeen, male, Sprague-Dawley rats were studied in three groups: control (Ctrl), control + insulin (Ctrl + I), and dexamethasone + insulin (Dex + I). PET scans were acquired for 2 h under euglycemic conditions in the Ctrl group and under hyperinsulinemic-euglycemic conditions in the Ctrl + I and Dex + I groups.

RESULTS

Glucose transport, assessed according to the 6-[(18)F]FDG concentration, was highest in skeletal muscle in the Ctrl + I, intermediate in the Dex + I, and lowest in the Ctrl group, while that in the brain was similar among the groups. Modeling analysis applied to the skeletal muscle uptake curves yielded values of parameters related to glucose transport that were greatest in the Ctrl + I group and increased to a lesser degree in the Dex + I group, compared to the Ctrl group.

CONCLUSION

6-[(18)F]FDG and the Michaelis-Menten-based model can be used to measure insulin-stimulated glucose transport under basal and an insulin resistant state in vivo.

摘要

目的

使用地塞米松诱导的胰岛素抵抗大鼠模型,利用6-脱氧-6-[(18)F]氟-D-葡萄糖(6-[(18)F]FDG)评估基于米氏动力学模型,通过正电子发射断层扫描(PET)定量葡萄糖转运。

程序

17只雄性Sprague-Dawley大鼠分为三组进行研究:对照组(Ctrl)、对照组 + 胰岛素(Ctrl + I)和地塞米松 + 胰岛素(Dex + I)。在正常血糖条件下对Ctrl组进行2小时的PET扫描,在高胰岛素-正常血糖条件下对Ctrl + I组和Dex + I组进行PET扫描。

结果

根据6-[(18)F]FDG浓度评估的葡萄糖转运,在Ctrl + I组的骨骼肌中最高,在Dex + I组中居中,在Ctrl组中最低,而在大脑中各组相似。应用于骨骼肌摄取曲线的模型分析得出与葡萄糖转运相关的参数值,在Ctrl + I组中最大,与Ctrl组相比,在Dex + I组中增加程度较小。

结论

6-[(18)F]FDG和基于米氏动力学的模型可用于在体内基础状态和胰岛素抵抗状态下测量胰岛素刺激的葡萄糖转运。

相似文献

3
Lumped constant for [(18)F]fluorodeoxyglucose in skeletal muscles of obese and nonobese humans.
Am J Physiol Endocrinol Metab. 2000 Nov;279(5):E1122-30. doi: 10.1152/ajpendo.2000.279.5.E1122.
5
Hyperglycemia-induced stimulation of glucose transport in skeletal muscle measured by PET-[18F]6FDG and [18F]2FDG.
Physiol Meas. 2012 Oct;33(10):1661-73. doi: 10.1088/0967-3334/33/10/1661. Epub 2012 Sep 18.
6
In vivo effects of insulin on tumor and skeletal muscle glucose metabolism in patients with lymphoma.
Cancer. 1994 Mar 1;73(5):1490-8. doi: 10.1002/1097-0142(19940301)73:5<1490::aid-cncr2820730528>3.0.co;2-h.
7
Kinetic modeling of [(18)F]FDG in skeletal muscle by PET: a four-compartment five-rate-constant model.
Am J Physiol Endocrinol Metab. 2001 Sep;281(3):E524-36. doi: 10.1152/ajpendo.2001.281.3.E524.
8
Effect of insulin and dexamethasone on fetal assimilation of maternal glucose.
Endocrinology. 2011 Jan;152(1):255-62. doi: 10.1210/en.2010-0959. Epub 2010 Nov 17.
9
Uptake of 18F-labeled 6-fluoro-6-deoxy-D-glucose by skeletal muscle is responsive to insulin stimulation.
J Nucl Med. 2009 Jun;50(6):912-9. doi: 10.2967/jnumed.109.062687. Epub 2009 May 14.

引用本文的文献

2
Dexamethasone-associated metabolic effects in male mice are partially caused by depletion of endogenous corticosterone.
Front Endocrinol (Lausanne). 2022 Aug 10;13:960279. doi: 10.3389/fendo.2022.960279. eCollection 2022.
3
Computational modeling of PET tracer distribution in solid tumors integrating microvasculature.
BMC Biotechnol. 2021 Nov 25;21(1):67. doi: 10.1186/s12896-021-00725-3.

本文引用的文献

1
The role of glucose transporters in brain disease: diabetes and Alzheimer’s Disease.
Int J Mol Sci. 2012 Oct 3;13(10):12629-55. doi: 10.3390/ijms131012629.
2
Hyperglycemia-induced stimulation of glucose transport in skeletal muscle measured by PET-[18F]6FDG and [18F]2FDG.
Physiol Meas. 2012 Oct;33(10):1661-73. doi: 10.1088/0967-3334/33/10/1661. Epub 2012 Sep 18.
3
Regulation of glucose transport by insulin: traffic control of GLUT4.
Nat Rev Mol Cell Biol. 2012 May 23;13(6):383-96. doi: 10.1038/nrm3351.
5
Analysis of metabolism of 6FDG: a PET glucose transport tracer.
Nucl Med Biol. 2011 Jul;38(5):667-74. doi: 10.1016/j.nucmedbio.2010.12.007. Epub 2011 Mar 3.
6
The vascular biology of atherosclerosis and imaging targets.
J Nucl Med. 2010 May 1;51 Suppl 1:33S-37S. doi: 10.2967/jnumed.109.069633. Epub 2010 Apr 15.
7
Effect of dexamethasone on insulin secretion: examination of underlying mechanisms.
Endocr Pract. 2010 Sep-Oct;16(5):763-9. doi: 10.4158/EP09372.OR.
8
Integrated software environment based on COMKAT for analyzing tracer pharmacokinetics with molecular imaging.
J Nucl Med. 2010 Jan;51(1):77-84. doi: 10.2967/jnumed.109.064824. Epub 2009 Dec 15.
9
Cardiac positron emission tomography.
J Am Coll Cardiol. 2009 Jun 30;54(1):1-15. doi: 10.1016/j.jacc.2009.02.065.
10
Uptake of 18F-labeled 6-fluoro-6-deoxy-D-glucose by skeletal muscle is responsive to insulin stimulation.
J Nucl Med. 2009 Jun;50(6):912-9. doi: 10.2967/jnumed.109.062687. Epub 2009 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验