Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
Physiol Meas. 2012 Oct;33(10):1661-73. doi: 10.1088/0967-3334/33/10/1661. Epub 2012 Sep 18.
A physiologically based model proposed by our group has been developed to assess glucose transport and phosphorylation in skeletal muscle. In this study, we investigated whether our model has the ability to detect a glucose-induced increase in glucose transport in skeletal muscle. In particular, we used small-animal positron emission tomography (PET) data obtained from [18F]6-fluoro-6-deoxy-D-glucose ([18F]6FDG). A 2 h PET scan was acquired following a bolus injection of [18F]6FDG in rats currently under euglycemic or hyperglycemic conditions, while somatostatin was infused during both conditions in order to prevent a rise in the endogenous plasma insulin concentration. We were thus able to assess the effect of hyperglycemia per se. For a comparison of radiopharmaceuticals, additional rats were studied under the same conditions, using [18F]2-fluoro-2-deoxy-D-glucose ([18F]2FDG). When [18F]6FDG was used, the time-activity curves (TACs) for skeletal muscle had distinctly different shapes during euglycemic and hyperglycemic conditions. This was not the case with [18F]2FDG. For both [18F]6FDG and [18F]2FDG, the model detects increases in both interstitial and intracellular glucose concentrations, increases in the maximal velocity of glucose transport and increases in the rate of glucose transport, all in response to hyperglycemia. In contrast, there was no increase in the maximum velocity of glucose phosphorylation or in the glucose phosphorylation rate. Our model-based analyses of the PET data, obtained with either [18F]6FDG or [18F]2FDG, detect physiological changes consistent with established behavior. Moreover, based on differences in the TAC shapes, [18F]6FDG appears to be superior to [18F]2FDG for evaluating the effect of hyperglycemia on glucose metabolism in skeletal muscle.
我们小组提出的一种基于生理学的模型,用于评估骨骼肌中的葡萄糖转运和磷酸化。在这项研究中,我们研究了我们的模型是否有能力检测到骨骼肌中葡萄糖诱导的葡萄糖转运增加。特别是,我们使用了从小鼠中获得的正电子发射断层扫描(PET)数据[18F]6-氟-6-脱氧-D-葡萄糖([18F]6FDG)。在大鼠处于正常血糖或高血糖状态下,静脉注射[18F]6FDG 后进行 2 小时 PET 扫描,同时在两种状态下输注生长抑素以防止内源性血浆胰岛素浓度升高。因此,我们能够评估高血糖本身的影响。为了比较放射性药物,还在相同条件下使用[18F]2-氟-2-脱氧-D-葡萄糖([18F]2FDG)对额外的大鼠进行了研究。当使用[18F]6FDG 时,在正常血糖和高血糖状态下,骨骼肌的时间-活性曲线(TAC)具有明显不同的形状。使用[18F]2FDG 时则不是这样。对于[18F]6FDG 和[18F]2FDG,模型均检测到细胞外和细胞内葡萄糖浓度增加、葡萄糖转运最大速度增加和葡萄糖转运率增加,所有这些都是对高血糖的反应。相比之下,葡萄糖磷酸化的最大速度或葡萄糖磷酸化率没有增加。我们基于模型的分析,无论是使用[18F]6FDG 还是[18F]2FDG 获得的 PET 数据,都检测到与既定行为一致的生理变化。此外,基于 TAC 形状的差异,[18F]6FDG 似乎优于[18F]2FDG,可用于评估高血糖对骨骼肌葡萄糖代谢的影响。